Skip to main content

Looking to the Future

metropolis-02 Over at the National Journal's Energy and Environment blog, Amy Harder asks how the energy mix will differ 30 years from now - in 2042, in other words.

What long-term market dynamics -- if any -- will shift the nation's energy from fossil fuels to cleaner sources of energy? What environmental concerns should the country consider? What role do the federal and state governments play in shaping and sustaining the energy mix?

And why try to answer whopping big questions like that when you have access to some leaders in industry and elsewhere to help out?

Former Energy Secretary Spencer Abrahams has a book (Amazon link - no benefit to me - but it's a pretty interesting book anyway) that asks a similar questions and he's got it sorted:

I  call my plan the 30—30—30 by 2030 strategy. It calls for us to produce 30% of our power from nuclear and 30% from natural gas and clean coal by the target date. It also calls for us to generate another 30% from a combination of renewable energy and reductions in demand as a result of energy efficiency improvements during this timeframe.

And he goes further into how to bring about this result. A completely different outlook is provided by Thomas Pyle over at the Institute for Energy Research:

Thirty years from now, the American economy will still be dependent on the most affordable, efficient fuel sources available – oil, coal, and natural gas. Given present energy technologies, we should expect to see these energy sources to continue to dominate the American energy portfolio.

Really? Well, the idea here is not to agree with everyone, but to weigh the various arguments and see which have some heft. No one can predict the future, of course, but the fun is to see if one can marshal enough facts to make one's argument compelling and thus provide a workable way forward. That's how the future gets built.

NEI's President and CEO Marvin Fertel has an exceptionally good run at it:

Federal government forecasts conclude that the U.S. would need approximately 70 new nuclear reactors just by 2030. EPA’s forecast to 2050 under the Kerry-Lieberman bill was as high as 180 reactors in one scenario. All mainstream analyses of climate change by independent organizations have concluded that reducing carbon dioxide emissions will require a portfolio of technologies, that nuclear energy must be part of the portfolio and that a major expansion of nuclear energy over the next few decades is essential.

What works here is the use of facts to make the case - and he happens to be right. If the U.S. is to get where it wants to go, nuclear energy has to be in the mix.

But just for fun - and to demonstrate how predictions work - consider:

Small-scale reactors can complement large nuclear plant projects by expanding potential markets in the United States and abroad for carbon-free energy production. Small reactors can be manufactured in North America to meet growing domestic and export demand—creating high-tech U.S. jobs and improving our global competitiveness.

This is true - legislation (that I'll write about later) was just introduced in the Senate to foster development of small reactors - but these little powerhouses weren't even on the radar five years ago. So it's unlikely Fertel would have referenced them then. The future is always with us and always surpassing our expectations - and in this case, small reactors make a compelling case for producing emission free energy in a number of scenarios where a full-scale reactor isn't needed. Five years from now, who knows what any of the writers at the National Journal will have to add to their arsenal of ideas?

Do read the whole thing. Lots of other voices there - and they're all worth reading fully.

Too early for the future? The city of tomorrow, as seen in Metropolis (1926).

Comments

DocForesight said…
On the 30-30-30 by 2030 plan, what leaps in technology or weather control (sun and wind) will need to occur in order to expand from 2% to nearly 30%? Hydro is 8% or so now, will it expand much by 2030?

The development and deployment of SMRs makes the most sense in every respect but the NRC will need to be adjusted in order to foster that expansion. Will Congress take the lead on directing the NRC to do so?

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …