Skip to main content

Tritium, Tritium, Come and Get It

Besides last week being a busy week on budget proposals, loan guarantees, etc., there was quite a bit of discussion on the Vermont Yankee tritium issue. And Meredith Angwin at Yes Vermont Yankee has done an exquisite job of keeping up with all of the media reports and facts that are coming out.

As she has found, there are very few times when clear communication is essential and this was one of them.

As I look at the history here, I see many opportunities for miscommunication. Underground and buried...what did these terms mean to the various players? Was Entergy asked about underground pipes, but answered about buried pipes? Did the nuclear engineer use the words buried, underground as if they were synonyms? Is John Wheeler correct about the use of underground and buried? Or is Gundersen correct in his implication that this is semantic obfuscation of a clear situation?

Were there honest communication errors?

Maybe. We’ll eventually find out.

Something that may not be quite honest, though, is Sun Sentinel’s op-ed on tritium from Beyond Nuclear’s Kevin Kamps. As Rod Adams points out, the op-ed:

is a blatant effort to spread fear, uncertainty and doubt about the safety of the plant and its positive contributions to the New England environment and economy.

With a spreadsheet and knowing math, here’s what Rod calculated to put tritium quantities in perspective:

A "picocurie" is 1 x 10^-12 curies. Said another way, a picocurie is to a curie as a penny is to $10 BILLION. A curie is not a large unit; a curie of tritium has a mass of just 0.1 milligrams.

Putting all of those numbers in my spreadsheet tells me that 20,000 picocuries/liter is just 0.000000000002 grams of tritium in 1000 grams of water. You could drink that water for a year as your ONLY source of fluid and get a total dose of just 3-4 millirem which is 1/100th of the average annual dose from background radiation in the US.

Yes, there are people who claim that you can never get down to zero risk until you get to zero dose, but there is no such thing here on Earth; it is a naturally radioactive place. The radiation from such low levels of tritium is lost in the noise of natural variation.

Of course, putting risk in context is lost on some people. But as long as we continue to educate everyone on the tritium issue, the masses will eventually understand how to put this in perspective and ignore the doomsayers.

Looking forward to another week of debate, discussion and discovery!


Anonymous said…
Of course, putting risk in context is lost on some people. But as long as we continue to educate everyone on the tritium issue, the masses will eventually understand how to put this in perspective and ignore the doomsayers.

I disagree. The vast majority of the American people are innumerate, functionally illiterate, and intellectually lazy. Educating the masses is a worthwhile goal, but expect to fail.

If you want to sell nuclear to the populace, tell them it's the only non-polluting power source that will let them have cold beer, hot chili, and HDTV during the big game. Use to word "picocurie" at the masses and their eyes glaze over and they start drooling.
Anonymous said…
WEll, there's plenty of spin to go around. EPA says that if your drinking water is runnung 20,000pCi/L tritium then you are in the 3 in 10,000 fatal cancer risk pool. On average the US fatal cancer risk pool runs something like 20-1.
So why worry? Well, if 3300 people are exposed, we're gonna have an extra fatal cancer. It's okay, it's probably the postmaster who few people really like. Small towns are like that.
What I don't get is observation expressed in the posting
"As she has found, there are very few times when clear communication is essential and this was one of them."
I would think that there are few times when clear communication isn't essential.
Luke said…
"On average the US fatal cancer risk pool runs something like 20-1.
So why worry? Well, if 3300 people are exposed, we're gonna have an extra fatal cancer."

Now, Anonymous, that's just not true.

For that to be true, you have to assume that LNT is true - for which there is no evidence.

Furthermore, even if we assume that LNT is true, you need to show that such a small dose isn't completely lost in the noise of the natural variance in the several hundred millirems per year (on average) of natural background radiation.
mcgarrypj said…
While I agree with the first comment, in terms of most of the public's motivation and ability to comprehend the difference between a micro-curie of tritium and a bowl of guacamole, we that do understand the difference and can fathom the mysteries of comparative risk, must still attempt to educate those that can't. The analogy in the article of a a micro-curie being a penny is brilliant. If there is one thing that the public understands it's money. Additionally, explaining the radiation that we are all exposed to everyday in our daily activities; take for instance the visible light spectrum, which our eyes are brilliantly designed receivers. I've often used the fact that just because your radio is tuned to say 98.7 MHz, that doesn't mean you and your loved ones are not exposed to all of the other electromagnetic frequencies across the rest of the dial. And that's just radio frequencies. Radiation is a fact of life in this universe. Up to this point, that has not been a regular component of most education programs.
Anonymous said…
So why worry? Well, if 3300 people are exposed, we're gonna have an extra fatal cancer.

If and only if the linear-non-threshold hypothesis is correct. (Which it isn't.)
Bill said…
Also, nobody is using this as their sole source of drinking water, so cut the dose by at least a couple more orders of magnitude.
GRLCowan said…
No-one is drinking the water from the test wells at all.

Because the radioactivity in natural gas is due to radon, of which 1 disintegration per second amounts to 0.88 picowatts of radiation emission, and 1 tritium disintegration per second is 0.00092 pW, natural gas typically contains as much or more radioactivity due to radon as the mentioned groundwater samples contain due to tritium.

So there are no genuine viewers-with-alarm of these test well results who are not even more alarmed by the possibility, if old nuclear plants are shut down, that natgas plants will be operated in their stead.

Those plants burn a lot of litres of gas, after all, and radioactivity is unaffected by combustion, so it all goes into the air everyone breathes (rather than sitting in water no-one drinks).

(How fire can be domesticated)
Anonymous said…
This is not related to the current post, but please check out Bill Gates' quick comments on nuclear power in the "Alternative Energy Part 2" recording starting around 2 min and 20 seconds into the recording.

(Did you know that Gates is an investor in TerraPower?)
2dy said…
Luke, well said! In fact 'Anonymous' in comment #5 liked your input so much, they repeated it.

Bill, your comment for reducing the exposure calculation works only assuming the alternative drinking source is free of radioactivity - a rare circumstance. As GRLCowan pointed out, no one is drinking the water. But my point is that whatever they are drinking is likely to be more exposure, not less - while still harmless, in the sense of 'lost within the background noise of radiation exposure.'

Much ado about nothing. Such a shame the energy and emotion spent on an irrelevant issue, from a public health standpoint.

But I don't believe it's a waste of energy to educate the public, nor helpful to treat our neighbors derogatorily. Nuclear energy is a far better environmental benefit than a risk - and we need to get much better at relating that in terms the public will understand!

If they listen attentively and don't get it, then we, the communicators, are the ones at fault.

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.


The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.

What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why Nuclear Plant Closures Are a Crisis for Small Town USA

Nuclear plants occupy an unusual spot in the towns where they operate: integral but so much in the background that they may seem almost invisible. But when they close, it can be like the earth shifting underfoot., the Gannett newspaper that covers the Lower Hudson Valley in New York, took a look around at the experience of towns where reactors have closed, because the Indian Point reactors in Buchanan are scheduled to be shut down under an agreement with Gov. Mario Cuomo.

From sea to shining sea, it was dismal. It wasn’t just the plant employees who were hurt. The losses of hundreds of jobs, tens of millions of dollars in payrolls and millions in property taxes depressed whole towns and surrounding areas. For example:

Vernon, Vermont, home to Vermont Yankee for more than 40 years, had to cut its municipal budget in half. The town closed its police department and let the county take over; the youth sports teams lost their volunteer coaches, and Vernon Elementary School lost th…