Skip to main content

CNO Summit Diary: Chasing lessons in safety at Fukushima by chasing the sun

The following post was sent to us via email by John Keeley, who is travelling with a delegation of American chief nuclear officers in Japan this week. You can follow John's observations on Twitter by following @nei_media and the #CNOSummit hash tag.

In summer, in morning or early afternoon, when a traveler moves by air many thousands of miles from east to west, he never quite escapes the bright sun of day. My communicator colleagues here in Japan all noted the difficulty we had securing substantive rest on our flights over the Pacific during this novel journey. We were ever chasing the sun, they said.

The American chief nuclear officers we're following with our cameras and electronica this week have been, ever since their arrival here, in perpetual motion in pursuit of safety lessons. In making the unprecedented and extraordinary commitment to "put eyes on the problem" created by the 3/11 Fukushima tragedy, our CNOs, it occurs to me, are following a global commitment to safety much as we communicators were following the sun.

Remember: this is a trip undertaken *after* U.S. CNOs had unanimously adopted significant safety enhancements at all 63 operating stations in response to the Fukushima accident.

The CNOs I ran into late on Sunday night were every bit as bleary-eyed and time-zone tortured as we communicators, but about 15 of them awoke at the crack of dawn Monday morning in order to board buses and trains to Kashiwazaki Kariwa, the largest nuclear generating station in the world with a capacity of 8200 MWs and 5400 employees.  Since 2007 the station has invested almost $2 billion dollars fixing earthquake damage and installing post-Fukushima modifications. There were significant safety lessons to be learned in seismic and flooding space at Kashiwazaki, and so our CNOs bused hours across this island to learn them.

They returned from that site about an hour before meeting their Japanese CNO counterparts at Monday night's welcoming reception. There's no rest for the safety-lesson-craving weary on this trip, and well before a new workday had started in Tokyo on Tuesday every American CNO was back on a tour bus, this time headed for site visits at both Fukushima Daini and Daiichi. We'll have a lot more to say and illustrate about those two extraordinary site visits in the days ahead, but at the end of a hot Tuesday of touring the CNOs were still very much in motion, still very much  in learning mode.

Darkness was fast setting upon our tour, but instead of heading to our new hotel and a badly needed hot meal our buses trudged slowly through a town called Tomioka. It's a seaside town quite near both Fukushima plant sites, and on March 11, 2011, it knew 16,000 residents. It was a community known in summer for festivals and parades.
Tomioka. Photo used under Create Commons License through Wikipedia
Today it's devoid of human existence, devastated by the tsunami and uninhabitable by radiological fallout. Unchecked nature is overgrowing much of what had been developed and thriving little more than two years ago.

Fallout from the Daiichi accident delivers 1-3 millisieverts microsieverts an hour in Tomioka. The Japanese government has begun decontamination efforts for the town, and there is a plan to have is habitable by 2017, but today it is a sobering wreck of abandonment. Our CNOs wanted to see with their very own eyes the ultimate consequences of a day gone very wrong at a plant.

I wish them all some early and deep shuteye tonight. They're off to freshly pursue safety lessons through the total  sun again of tomorrow.


jimwg said…
Excellent report! Please put into layman's perspective the millisievert readings in Tomioka, i.e, compared to Central Park New York City, Denver, etc. That's more than just helpful: It's vital to translate technospeak for a science-challenged public who are easily swayed by exaggerated FUD claims.

James Greenidge
Queens NY

Anonymous said…
"Fallout from the Daiichi accident delivers 1-3 millisieverts an hour in Tomioka."

Are you sure that isn't microSv/hour?
seth said…
"The central part of the town that used to be home to some 10,000 residents was designated as a residence restriction zone, with annual radiation doses estimated to be between 20 millisieverts and 50 millisieverts."

Sometimes I wonder if NEI isn't 100% Big Oil funded.
Anonymous said…
For James: Estimates of the average exposure from radon in the U.S. contribute approximately 228 mRem/year. With 8760 hours in a year, this would be 0.03 mRem/hr. 3 Micro Sieverts equates to 0.3 mrem per hour, so 10 times normal when “just” using radon exposure (3 Milli Sieverts would be 300 mrem per hour).
jimwg said…
Anon, thanks! You're beautiful in the technical accuracy arena, and if you can apply comparative Sieverts measurements to layman comprehension levels such as sieverts readings in New York City, in a home, a cigarette, being in a stone office building, living in Denver, etc, you'd hit the need on the head for the nuclear community to translate highly complex technical terms to everyday layman perspectives. It is the curse of scientists and engineers that they overlook that most people don't perceive or contemplate the world on their plane. Antis have royally exploited pro-nukers issuing raw complex techno-facts to a bewildered science-clueless public as a part of FUD.

James Greenidge
Queens NY
anonymous-one said…
Well the difference between 0.3 mRem per hour and 300 mRem per hour is quite significant; that's why I wanted to hear from the author whether the actual dose rate was 3 millisieverts or 3 microsieverts. It is a factor of 1000 (of course) but, if you pick a dose threshold (say 10 Rem) you would reach that in just over a single day at 3 millisieverts/hr whereas it would take almost four years at 3 mictosieverts/hr. Like I said, it's a big difference and in this range it is crucial to get the units correct.
David Bradish said…
Thanks anon for looking closely. You are correct, it is microsieverts, not millisieverts.

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.

Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…