Skip to main content

Exploring Pluto and Other New Horizons With Nuclear Energy

The following is a guest post by Richard Rolland, an intern in NEI's Nuclear Generation Division.


Richard Rolland
Like many of my colleagues in the scientific community, I’m looking forward to viewing pictures of Pluto and its moons from the images taken by the space probe New Horizons on Tuesday morning. My excitement is enhanced by the knowledge that these pictures are made possible by nuclear power. New Horizons is powered 100% by nuclear power with a radioisotope thermal electric generator.

The two most common power sources for space probes today are solar power and RTGs. The benefits of solar power rapidly decrease the further a probe travels away from the Sun.  While radioisotope thermal electric generators (RTGs) function by utilizing the heat created from radioactive decay to produce electricity no matter the location. As we venture further into the depths of interplanetary space, nuclear power provides our space probes with a reliable source of electricity no matter the distance. With an RTG strapped to a space probe, it can venture wherever we wish.

Not only is the distance unrestricted, but the mass utilized in RTGs is trivial. The nuclear material that will power New Horizons for years to come will be less than 2.5% of the total mass of the spacecraft. Lowering the mass of the RTG allows it to carry additional scientific equipment.
Artist's conception of New Horizons approaching Pluto.
RTGs have been utilized before in some of NASA's most important missions. RTGs provided electricity for instrumentation and equipment while the Apollo astronauts were exploring the surface of the Moon. Even Voyager 1 and Voyager 2, which were both launched in 1977, are still operable due to the long-life of RTGs. The new Mars rover relies on a RTG to provide electricity. With an RTG on board, you never have to worry about a dust storm blocking sunlight and rendering the rover temporarily inoperable.

The nuclear industry has more to offer than electricity for space exploration. Nuclear thermal propulsion has the potential to cut the time it takes to travel to other planets in the solar system. Using nuclear thermal propulsion would cut travel time to Mars in half compared to today’s methods. It has been estimated that a probe, with some small advances in material science, would be able to employ nuclear thermal propulsion to reach Pluto in 6.5 years without a gravitational assist; while New Horizons took 9.5 years with a gravitational assist.

As we look to the future of space exploration and the pictures of Pluto, let us not forget the nuclear physics that made it possible. During the twentieth century, some of America’s most extraordinary accomplishments, splitting the atom and entering space, have been combined to allow for a future that humans once only dreamed of. Let’s continue with RTGs and bolster the research of nuclear thermal propulsion to make reliable and faster space exploration a reality.

EDITOR'S NOTE: For some, the arrival of New Horizons near Pluto represents the culmination of a career. That's the case with NASA mission scientist Andy Cheng, who has marked several life milestones as the probe traveled to Pluto. It's also important to point out that the RTG that's powering New Horizons relies on Plutonium-238, an isotope that's in short supply these days. While there's more than enough of a stockpile for now, NASA is looking at alternatives.

Comments

Anonymous said…
The Department of Energy's national laboratories play an important role producing the PU 238 and assembling and qualifying the RTGs for NASA. Truly a great team effort!

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …