Skip to main content

Walking into a Windmill

mill01 We’ve sometimes read stories about people who misjudged where a helicopter rotor was or just how close is too close when in proximity to an airplane propeller. But we hadn’t thought very much about the relative danger of being near a windmill. But danger there is:

[The Caithness Windfarm Information Forum’s] "Summary of Wind Turbine Accident Data to 31 December 2008"  reports 41 worker fatalities.  Most, not unexpectedly, were from falling as they are typically working on turbines some thirty stories above the ground. In addition, Caithness attributed the deaths of 16 members of the public to wind-turbine accidents.

Well, all right, that’s not getting in the way of the blades, exactly, but the roundup offered is almost comical in the way these towers of terror can do in the unwary. In addition to falling off them, you can have them hurtle themselves at you, throw ice at you, catch on fire and send flaming yuck your way, and collapse on top of you. They’re like the apple trees in The Wizard of Oz, but far crankier.

Most of these mishaps are simply collateral of having an energy generator heavily dependent on a moving part and of making towers that can deal with friction and vibration – presumably, engineers have worked out these issues, so there are likely occasional flaws in construction and siting that can send them cascading across the landscape. Given the small number of incidents (about 300 in the story) in relation to the number in use, perhaps small beans, but consider:

Why these fatalities for wind compared to none for the American nuclear power industry? Nuclear energy comes from a reactor core about the size of a living room where it can be monitored and contained in-depth. It would take 2,000 30-story tall wind turbines to produce the power of a typical nuclear plant, assuming 90 percent and 30 percent capacity factors. How many accidents would you expect when building 2,000 30-story turbine generators as compared to pouring concrete for a single containment building of a few thousand square feet?

More than zero, perhaps – nuclear plants have had industrial accidents, though nothing caused by radiation. Here’s the whole report, as a pdf.

Correx: We didn’t make it clear enough that the nuclear industry has had fatal industrial accidents – it has. We’re having a little fun with our wind friends, but we don’t want to be deceptive about it. The point the report makes about nuclear vs. wind and their relative potential for industrial accidents remains valid. The nuclear industry’s record on worker safety is remarkably good.

The windmill from Frankenstein (1931). First Victor von F- is heaved over its side and carried aloft by a sail before hurtling to the ground – he lives – then the mob catches it on fire and the creature is seemingly burned to death – or redeath – but also lives. Sort of a non-starter as a death trap.

Comments

GRLCowan said…
That source, and its source, seem to lack dignity. For instance, among their wind turbine accidents are those allegedly caused by driver distraction.

Paul Gipe has somewhere compiled statistics on wind turbine accidents that actually can be considered wind turbine accidents.

Many of them stem from the fact that a wind turbine could have electromagnetic clutches that, on power failure or detection of a fault, would declutch, and let B4C rods fall into the airstream, but that stream might not stop on cue.

(How fire can be domesticated)
Anonymous said…
Has no one ever died on the construction site of a commercial nuclear power plant?
Matthew66 said…
As anonymous has pointed out there is a factor that has not been considered - namely industrial accidents at nuclear facilities that do not involve exposure to radiation. It is well known that nuclear facilities are among the safest places to work, but I'm sure there have been industrial accidents where workers have been injured or killed by falling, or having something fall on them. These would be useful to include to add credibility and comparability to the article. I've seen articles here and elsewhere that compare industrial accident rates at various facilities.
perdajz said…
Yes, anonymous leads us to the four metrics of industrial safety:

1) public fatalities per unit output (kw-hr in this case)

2) public injuries per kw-hr

3) worker fatalities per kw-hr

4) worker injuries per kw-hr.

LWR are arguably perfect in the first two categories. You could extend this statement to North America if you like CANDU. Where a wind turbine is a missile hazard from the start, a nuclear power plant is built with myriad missile shields, snubbers, concrete walls, etc. expressly for the purpose of ensuring that no single mechanical failure poses a hazard to public health.

No. 3 is where the wind power industry really blows, pun intended. Gipe has likened wind power to coal mining in this regard, on a per unit energy basis.

And yes, workers have died in the construction and maintenance of nuclear power plants. But from a risk analysis perspective, it is one thing to lose a life in the construction of a 1000 MWe nuclear plant with 95% capacity factor, and quite another to lose a life in the construction of a piece of junk like a wind turbine that might generate 1 MWe, 10 or 12% of the time.

As for 4), worker injury rates in the nuclear power industry lately (last 5 years) have been comparable to rates in the finance or insurance industries. Stark evidence once again that no industry manages risk better than the nuclear power industry in the U.S. does.

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …