Skip to main content

Goodish News For the Solar Folk

sun The good news is First Solar has hit a milestone:

A long-sought solar milestone was eclipsed on Tuesday, when Tempe, Ariz.–based First Solar Inc. announced that the manufacturing costs for its thin-film photovoltaic panels had dipped below $1 per watt for the first time.

This isn’t quite where it needs to be to be cost competitive, but it’s an important barrier to crash through. However:

The question, though, is whether First Solar or any other solar manufacturer would be able to handle the flood of orders that would ensue if they reached competitive cost. At that point, it comes down to a matter of having enough of raw materials.

Scalability, our old friend. Apparently, the materials most in use in solar panels throw up roadblocks of their own when produced in bulk. For example:

While silicon is the second-most abundant element in the Earth's crust, it requires enormous amounts of energy to convert into a usable crystalline form.

The article points out that usable items such as copper sulfide, copper oxide and even iron pyrite – fool’s gold – might be plausible, but explains that they are less efficient in converting sunlight into electricity.

All of this might lead to comment about an immature technology versus a mature one (guess which?), but we come not to bury First Solar. Instead, while we note that First Solar is having a rough time in the current economic environment – its stock dropped 20% on word that some of its customers may default – this seems exactly the technology that will be looked at closely in any energy policy.

A bail out? – well, no, we don’t know if the government would directly issue grants to First Solar or simply make it more attractive for businesses and homes to install solar panels, though we suspect the latter is more likely. First Solar can certainly do the work.

Here’s another story by Popular Mechanics’ Alex Hutchinson on the perils and potential of solar power. Good stuff.

Comments

Anonymous said…
NEI certainly doesn't mean to suggest that solar power is "immature" and nuclear power is "mature"? Methinks that this is backwards, and confuses utility with maturity. The discovery of the photovoltaic effect predates the discovery of nuclear fission by about a century. The "modern" era of PV came in 1954, which corresponds roughly to the initial peaceful uses of nuclear power. And yet, 55 years later, fission is vastly more productive.

I think it's the other way around. PV is mature, meaning that it can't grow much beyond its current state. Oh sure, collection efficiency in pristine laboratory conditions might creep upwards, but this doesn't mean we can look to PV to end the era of the fossil fuel.

It's nuclear power that is immature, meaning that room for growth is practically limitless. We can't say that nuclear power is mature, just because of the spectactular operational and safety record of the LWR. New reactors. New fuels and new fuel cycles. It's nuclear power that hasn't grown up yet, and that's a great thing.
Bill said…
Badish news for solar in Scientific American, though that's not the point of the story.
Anonymous said…
"The "modern" era of PV came in 1954, which corresponds roughly to the initial peaceful uses of nuclear power. And yet, 55 years later, fission is vastly more productive."

If there had been hundreds of billions of dollars spent developing the basic technologies of solar PV during World War II and the cold war, as was the case with nuclear, that situation might be very different.
Anonymous said…
The technologies for solar cells and windmills emerged out of hundreds of billions of dollars spent on defense and civil aerospace RD&D. As did microelectronics and the Internet.

There are credible projections that improved fuel cycle technologies could cut nuclear waste production and uranium/thorium mining requirements by a factor of 100.

The commodity costs needed to build current light water reactors are $36 per kW of capacity, and could drop in half as reactors move to operate with higher temperatures and efficiency, meaning that as modern technology improves the supply chain for constructing new nuclear plants, construction costs well below $1000 per kW are entirely credible, resulting in long-term nuclear electricity, process heat, and hydrogen generation costs below 2 cents per kilowatt hour.
Finrod said…
"If there had been hundreds of billions of dollars spent developing the basic technologies of solar PV during World War II and the cold war, as was the case with nuclear, that situation might be very different."

What weight of gold bullion does it take to strain the laws of physics past breaking point?

Popular posts from this blog

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Why Ex-Im Bank Board Nominations Will Turn the Page on a Dysfunctional Chapter in Washington

In our present era of political discord, could Washington agree to support an agency that creates thousands of American jobs by enabling U.S. companies of all sizes to compete in foreign markets? What if that agency generated nearly billions of dollars more in revenue than the cost of its operations and returned that money – $7 billion over the past two decades – to U.S. taxpayers? In fact, that agency, the Export-Import Bank of the United States (Ex-Im Bank), was reauthorized by a large majority of Congress in 2015. To be sure, the matter was not without controversy. A bipartisan House coalition resorted to a rarely-used parliamentary maneuver in order to force a vote. But when Congress voted, Ex-Im Bank won a supermajority in the House and a large majority in the Senate. For almost two years, however, Ex-Im Bank has been unable to function fully because a single Senate committee chairman prevented the confirmation of nominees to its Board of Directors. Without a quorum

NEI Praises Connecticut Action in Support of Nuclear Energy

Earlier this week, Connecticut Gov. Dannel P. Malloy signed SB-1501 into law, legislation that puts nuclear energy on an equal footing with other non-emitting sources of energy in the state’s electricity marketplace. “Gov. Malloy and the state legislature deserve praise for their decision to support Dominion’s Millstone Power Station and the 1,500 Connecticut residents who work there," said NEI President and CEO Maria Korsnick. "By opening the door to Millstone having equal access to auctions open to other non-emitting sources of electricity, the state will help preserve $1.5 billion in economic activity, grid resiliency and reliability, and clean air that all residents of the state can enjoy," Korsnick said. Millstone Power Station Korsnick continued, "Connecticut is the third state to re-balance its electricity marketplace, joining New York and Illinois, which took their own legislative paths to preserving nuclear power plants in 2016. Now attention should