Skip to main content

Using More Energy + Growing Greater Wealth = A Cleaner Planet

Here's some brilliant logic from John Tierney at the NY Times on why using more energy and becoming more wealthy will "save the planet":
1. There will be no green revolution in energy or anything else. No leader or law or treaty will radically change the energy sources for people and industries in the United States or other countries. No recession or depression will make a lasting change in consumers’ passions to use energy, make money and buy new technology — and that, believe it or not, is good news, because...

2. The richer everyone gets, the greener the planet will be in the long run.

...

as people get wealthier they can afford cleaner water and air. They start using sources of energy that are less carbon-intensive — and not just because they’re worried about global warming. The process of “decarbonization” started long before Al Gore was born.

...

As their wealth grows, people consume more energy, but they move to more efficient and cleaner sources — from wood to coal and oil, and then to natural gas and nuclear power, progressively emitting less carbon per unit of energy.

...

The amount of carbon emitted by the average American has remained fairly flat for the past couple of decades, and per capita carbon emissions have started declining in some countries, like France. [Hmm, I wonder why that is the case in France...]

...

Over the past century, he [Mr. Ausubel] says, nothing has drastically altered the long-term trends in the way Americans produce or use energy — not the Great Depression, not the world wars, not the energy crisis of the 1970s or the grand programs to produce alternative energy.

“Energy systems evolve with a particular logic, gradually, and they don’t suddenly morph into something different,” Mr. Ausubel says. That doesn’t make for a rousing speech on Earth Day. But in the long run, a Kuznets curve is more reliable than a revolution.
Be sure to go back and read the whole thing. Hat tip to Eric McErlain!

Comments

Popular posts from this blog

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

A Billion Miles Under Nuclear Energy (Updated)

And the winner is…Cassini-Huygens, in triple overtime.

The spaceship conceived in 1982 and launched fifteen years later, will crash into Saturn on September 15, after a mission of 19 years and 355 days, powered by the audacity and technical prowess of scientists and engineers from 17 different countries, and 72 pounds of plutonium.

The mission was so successful that it was extended three times; it was intended to last only until 2008.

Since April, the ship has been continuing to orbit Saturn, swinging through the 1,500-mile gap between the planet and its rings, an area not previously explored. This is a good maneuver for a spaceship nearing the end of its mission, since colliding with a rock could end things early.

Cassini will dive a little deeper and plunge toward Saturn’s surface, where it will transmit data until it burns up in the planet’s atmosphere. The radio signal will arrive here early Friday morning, Eastern time. A NASA video explains.

In the years since Cassini has launc…