Skip to main content

The IBM Battery 500 Revs Up

us__en_us__energy__battery500_info2__748x443Although IBM is largely focused on computer science issues, it has labs all over the world that do all kinds of things – after all, IBM is also focused on making money. This page contains a good slice of what IBM is doing in the energy sphere.

But I was most interested in its battery technology project for electric cars.

IBM correctly notes drivers’ range anxiety, the fear that they’ll be in the middle of nowhere when the battery runs dry. Using today’s lithium-ion technology, electric cars can get about 100 miles on a charge – with the air conditioning blasting, 4 miles (kidding.)

So that’s the problem. Here’s the proposed solution:

Recognizing this [range anxiety], IBM started the Battery 500 project in 2009 to develop a new type of lithium-air battery technology that is expected to improve energy density tenfold, dramatically increasing the amount of energy these batteries can generate and store. Today, IBM researchers have successfully demonstrated the fundamental chemistry of the charge-and-recharge process for lithium-air batteries.

It’s even green beyond green.

During discharge (driving), oxygen from the air reacts with lithium ions, forming lithium peroxide on a carbon matrix. Upon recharge, the oxygen is given back to the atmosphere and the lithium goes back onto the anode.

Well, almost. I assume it is giving back less oxygen than it is taking, but if oxygen is your exhaust, that’s not bad. (There’s more to say on this. This part isn’t really working yet.)

And it gets (potentially) 500 hundred miles per charge.

I have no idea whether this can be scaled to work in cars or even work as advertised – on a corporate web site, you can’t expect much more than good news. Extreme Tech tries for a little more context:

Lithium-air batteries aren’t a new idea: They’ve been mooted since the 1970s, but the necessary tech was well beyond the capabilities of then-contemporary material science. Today, with graphene and carbon nanotubes and fancy membranes coming out of our ears, it seems IBM — with assistance from partners Asahi Kasei and Central Glass — now has the materials required to build a lithium-air battery. There is a video embedded below that details the electrochemical process of an li-air battery.

We should also note that the project utilizes IBM’s Blue Gene supercomputer to work out the chemistry – so it is selling its computers as being able to do such things.

Mobile & Apps is a little clearer on the downsides of the technology – or at least the challenges it is presenting:

[IBM’s Winfried] Wickle reckoned that one of the challenges was the belief that lithium-air batteries are rechargeable, but that turned out to be false. "What was thought to be rechargeability was in fact confused with destruction of battery." In theory, upon recharge the battery was supposed to release pure oxygen to the air. Instead of the oxygen, however, it was releasing carbon dioxide, the very greenhouse gas that electric vehicles aim to reduce.

Oops. That wouldn’t be good. The story goes to say that the solution, as in Idiocracy, might be electrolytes. This paints the technology as maturing but still uncertain and the outlook hazy but clearing. It’s the classic wait-and-see, but it’s worth doing until the nascent electric car market collapses or as long as IBM’s patience (and money) holds out. This would be a big deal if it came to fruition.

The nuclear angle is the same as it always has been on this subject. Electric cars need electricity – it they get traction on their own or are mandated at some point, a lot of electricity. Some kinds of energy might seem to mitigate the benefits of an electric car – nuclear much less so. Benefit upon benefit, you might say.

How the battery works. Click for large or view at IBM’s site.

Comments

jimwg said…
Good article.
It's amazing how much the public think electric cars are juiced with magic, with small reality-adjustment by commercials and news media.

James Greenidge
Queens NY
Anonymous said…
Excellent source of CO2! We should keep this technology on hand for the next global cooling cycle when Time magazine flips back to its previous scare topic that we are all going to freeze to death in the impending ice age. We can just fire up the old coal plants again and use them to charge our lithium-air batteries to help stop global cooling... as if...

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …