Skip to main content

Into the Fusion Breach with Lockheed Martin

lockheed-fusion It’s a short story in Scientific American that might make you say, Uh-oh, here we go:

Lockheed Martin Corp said on Wednesday it had made a technological breakthrough in developing a power source based on nuclear fusion, and the first reactors, small enough to fit on the back of a truck, could be ready in a decade.

Now, Lockheed Martin is certainly a legitimate outfit – my father worked there for years - and likely wouldn’t make a statement of this sort unless it were serious. Still, there are some red flags:

Tom McGuire, who heads the project, said he and a small team had been working on fusion energy at Lockheed's secretive Skunk Works for about four years, but were now going public to find potential partners in industry and government for their work.

Words such as secretive don’t inspire confidence, especially for what would be a gigantic breakthrough. Four years also seems odd, given the much longer amounts of time that other fusion projects, such as ITER and the the National Ignition Facility, have been at it.

I looked around at other accounts to have my own suspicious nature (when it comes to fusion) quashed.

Wired:

The problem with that reactor? It doesn’t exist yet. “Some key parts of the prototype are theoretical and not yet proven,” says Nathan Gilliland, CEO of Canadian fusion company General Fusion.

Business Insider:

But most scientists and science communicators we talked to are skeptical of the claim.

Other accounts are more objective, though several note the issues with fusion – scalability, power consumption, etc. Climate Progress ties fusion into its own interests in an interesting way:

At this point, keeping the world under 2°C of global warming will require global greenhouse gas emissions to peak in 2020 and fall rapidly after that. Developed countries may very well need to peak by 2015 and then start dropping by 10 percent a year. So by Lockheed Martin’s own timeline, their first operational CFR won’t come online until after the peak deadline. To play any meaningful role in decarbonization — either here in America or abroad — they’d have to go from one operational CFR to mass production on a gargantuan scale, effectively overnight. More traditional forms of nuclear power face versions of the same problem.

This argument, which is head slappingly obtuse, comes with an agenda:

Demonstration projects, particularly in Europe, are already showing how proper coordination on the grid can stitch a renewable portfolio together in ways that smooth out the inherent intermittency of when solar and wind arrays actually produce power.

There you go. When you prefer one nascent solution over another, problems with your favored project evaporate in the, uh, wind while the other is just useless. I’d say: keep pursuing both.

The bottom line: fusion projects are, so far anyway, always five to 10 years from fruition. It’s almost an article of faith in the fusion community. Does that mean all such effort should stop? No, of course not: the potential benefits are enormous. But we reserve the right to take a believe-it-when-see-it stance. So all good fortune to Lockheed Martin – and the National Ignition Facility – and ITER – and General Fusion. Who makes this work will create the disruptive technology of the early-or mid-or late 21st century. Then it’s on to the flux capacitor and dilithium crystals.

Lockheed Martin has a page up about its fusion activities, though its press release on its breakthrough has disappeared. Make of that what you will.

Comments

Anonymous said…
If these fusion reactors ever become a commercial reality, where are they going to get the tritium from? Deuterium can be extracted from water, but as far as I know the only real source of tritium is fission reactors which produce only small quantities

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …