Skip to main content

Swedish Study Examines Nuclear and Climate Change

From the land of lingonberries and aquavit:

In just two decades Sweden went from burning oil for generating electricity to fissioning uranium. And if the world as a whole were to follow that example, all fossil fuel–fired power plants could be replaced with nuclear facilities in a little over 30 years.

And if you did this?

Such a switch would drastically reduce greenhouse gas emissions, nearly achieving much-ballyhooed global goals to combat climate change. Even swelling electricity demands, concentrated in developing nations, could be met.

The Scientific American article says that this would be a heavy lift. Would it? The interesting thing is that someone worked out the numbers and figured it all out – well, at least the industrial and manufacturing parts. That someone would be Staffan Qvist, a physicist at Sweden’s Uppsala University.

Sweden gets about 50 percent of its electricity generation from hydro power and 30 percent from nuclear energy. Midnight Sun Land has had mixed feelings about nuclear, passing a bill to phase it out, then reversing course and deciding that new reactors can be built at existing facilities but only to replace end-of-life reactors. This torturous approach is a bit eye rolling – just split the atom, don’t split the difference. It’s as though Sweden has learned that nuclear energy has benefits it wants to leverage yet doesn’t want to seem too enthusiastic about it.

Scientific America’s write-up is good, though we wondered if we could get a look at Qvist’s study. And indeed, it is online and in English to boot. The title is (deep breath) “Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data.” The regions considered are Sweden and France.

Some features of the report seem obvious, but are not often stated in this context and can easily be overlooked as useful factors. Some of this reflects the growth of the industry over the last 50 years and what that means to countries who now want to implement nuclear energy now:

Countries adopting or expanding their nuclear production capacity today have comparatively little need to develop indigenous designs and supply chains in the way Sweden did, since turn-key products are available from a number of vendors on an open competitive market. It is considerably easier to buy plants and nuclear fuel internationally today than it was in the early days of the Swedish nuclear program, with a larger number of mature, internationally marketed commercial designs on offer today compared to the situation of the mid 1960s.

Nine of Sweden’s current fleet are home-grown boiling water reactors while three are American-sourced pressurized reactors. So Sweden did design and build most of its plants itself.

A lot of the paper is, as you’d expect, fairly dense, comparing coal to nuclear to determine their relative output. It all supports a conclusion that is loud and clear.

No renewable energy technology or energy efficiency approach has ever been implemented on a scale or pace which has resulted in the magnitude of reductions in CO2-emissions that is strictly required and implied in any climate change mitigation study—neither locally nor globally, normalized by population or GDP or any other normalization parameter.

The results indicate that a replacement of current fossil-fuel electricity by nuclear fission at a pace which might limit the more severe effects of climate change is technologically and industrially possible—whether this will in fact happen depends primarily on political will, strategic economic planning, and public acceptance.

I can’t imagine this being said any plainer.

Comments

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why Nuclear Plant Closures Are a Crisis for Small Town USA

Nuclear plants occupy an unusual spot in the towns where they operate: integral but so much in the background that they may seem almost invisible. But when they close, it can be like the earth shifting underfoot.

Lohud.com, the Gannett newspaper that covers the Lower Hudson Valley in New York, took a look around at the experience of towns where reactors have closed, because the Indian Point reactors in Buchanan are scheduled to be shut down under an agreement with Gov. Mario Cuomo.


From sea to shining sea, it was dismal. It wasn’t just the plant employees who were hurt. The losses of hundreds of jobs, tens of millions of dollars in payrolls and millions in property taxes depressed whole towns and surrounding areas. For example:

Vernon, Vermont, home to Vermont Yankee for more than 40 years, had to cut its municipal budget in half. The town closed its police department and let the county take over; the youth sports teams lost their volunteer coaches, and Vernon Elementary School lost th…