Skip to main content

The Next Big Thing in Nuclear Power: Think Smaller & Safer

Dr. Everett Redmond
The following is a guest post by Dr. Everett Redmond, NEI's Senior Director, Policy Development.

There’s a lot to like about the small modular reactor design that NuScale Power submitted yesterday to the Nuclear Regulatory Commission. Most often people talk about the ability to build such reactors in a factory and ship them by truck or rail, in nearly-finished form, to where they are needed, and to add generating capacity to a plant in modest increments, as demand grows. But it’s easy to overlook another strength of the NuScale design: one of its intrinsic features is a simple way to enhance the safety of the reactor fuel.

There’s a fancy name for this feature: a high surface-to-volume ratio. In plain English, as a container gets smaller, its surface area gets larger relative to its volume, a phenomenon obvious to anyone who cooks. Take a hardboiled egg out of the pot of boiling water and put it into a bowl of cold water, and the egg cools very quickly. It does that because the water draws away the heat much faster than air could, and the area of the egg shell is relatively large compared to volume of the egg. Contrast this with a boiled potato that would take longer to cool because its surface area is smaller in comparison to its volume.
Cooling the NuScale SMR is like chilling a hard boiled egg.*
The NuScale module’s core is about one-twentieth the size of a standard large unit. The NuScale cores each sit in their own containment, a vessel a little like a thermos bottle. The containments are submerged in a huge pool of water. Like a thermos, the NuScale design uses a vacuum between the inner wall and the outer wall of its containment vessel, so the reactor can produce steam without heating up the surrounding water.

If there’s a problem, valves will break the vacuum and the steam from the reactor will flow into that vacuum space, and condense into water. So that space, which used to be a vacuum, and insulating layer, will become filled with water which will conduct heat away from the core. The heat will naturally travel through that water and to the outer wall of the module, and from there into the pool. The heat will bleed away fast enough so that the core can’t heat up to the point of damaging the fuel.

That principle leads to other advantages. The design is intended to be “walk-away safe,” with no short-term actions required by the operators. And existing reactors keep safety-grade backup diesel generators on site, but NuScale does not need these, because it doesn’t need the electricity to pump water or run mechanical systems to draw away heat. In fact this simple design does not use pumps when running normally to move the useful heat out of the core so it can be turned into electricity; that happens through natural convection.

Of course, an inherently safe design is always a good idea. But there’s another advantage here. The NRC has yet to evaluate NuScale’s application, but NuScale’s engineering shows that the emergency planning zone for its plant should extend only as far as the plant fence. The reactor can be located close to where electricity is needed the most.

That will make the NuScale reactor a good candidate for replacement power at old fossil-fueled sites in the United States, and in fast-growing cities around the world that do not have adequate electric local generation or a strong power grid to carry in power from distant places.

*Photo by Andrea Nguyen, provided under a Creative Commons license.

Comments

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why Nuclear Plant Closures Are a Crisis for Small Town USA

Nuclear plants occupy an unusual spot in the towns where they operate: integral but so much in the background that they may seem almost invisible. But when they close, it can be like the earth shifting underfoot.

Lohud.com, the Gannett newspaper that covers the Lower Hudson Valley in New York, took a look around at the experience of towns where reactors have closed, because the Indian Point reactors in Buchanan are scheduled to be shut down under an agreement with Gov. Mario Cuomo.


From sea to shining sea, it was dismal. It wasn’t just the plant employees who were hurt. The losses of hundreds of jobs, tens of millions of dollars in payrolls and millions in property taxes depressed whole towns and surrounding areas. For example:

Vernon, Vermont, home to Vermont Yankee for more than 40 years, had to cut its municipal budget in half. The town closed its police department and let the county take over; the youth sports teams lost their volunteer coaches, and Vernon Elementary School lost th…