Skip to main content

Magnetic Nanoparticles to the Rescue ... Maybe

The Department of Energy is funding the University of Idaho with $732K to prove the feasibility of using highly magnetic nanoparticles to reprocess used nuclear fuel.
If successful, scientists at the University of Idaho will kill three birds with one nanoparticle by recovering usable nuclear fuel, making nuclear waste easier and safer to dispose of, and accomplishing the task in an environmentally friendly way.
Here's some heavy science for you:
The fundamental technology that makes the process possible is the ability to make the MNPs. These are tiny pieces of pure iron nanoparticles coated with a layer of iron oxides, commonly known as rust, just two nanometers thick. Because of their iron core, the MNPs are 10 times more magnetic than commercially available nanoparticles that typically are made entirely of iron oxide. The trick to using nanoparticles made of pure iron is the thin coating of iron oxide, which prevents the core from completely oxidizing into rust.

The particles can be created in exact sizes, ranging from two nanometers to 100 nanometers in diameter. At their largest, scientists still could fit 100 million nanoparticles on the head of a pin. At their smallest, a pin head could fit 250 billion.

The project will explore a process applied to the MNPs that allows the tiny pieces of iron to selectively grab on to radioactive metals belonging to the actinides group of elements. The nanoparticles are coated by an organic molecule that acts like glue for other chemicals, in this case holding alkyl-oxa-diamide. This long-named chemical compound works like Velcro, grabbing and holding tennis balls. Except in this case, the tennis balls actually are radioactive metal ions.

Because the MNPs have such a high magnetic momentum, a small magnetic field selectively can yank the MNPs with attached radioactive molecules out of the nuclear waste. Once separated, a process breaks the bonds, separating the actinides from the nanoparticles, both of which can be reused.
And what kind of experts are needed?
“We need a nuclear specialist, physicist and organic biochemist to even make the right experiments,” said Paszczynski. “It truly is an interdisciplinary research group.”
This stuff is way beyond my knowledge but it sounds cool. Best of luck!

Picture above is a chain of magnetic nanoparticles.

Comments

Jason Ribeiro said…
This is interesting. I would also like to know if anyone has any news about nano-particle enhanced coolant water?

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…