Below is from our rapid response team . Yesterday, regional anti-nuclear organizations asked federal nuclear energy regulators to launch an investigation into what it claims are “newly identified flaws” in Westinghouse’s advanced reactor design, the AP1000. During a teleconference releasing a report on the subject, participants urged the Nuclear Regulatory Commission to suspend license reviews of proposed AP1000 reactors. In its news release, even the groups making these allegations provide conflicting information on its findings. In one instance, the groups cite “dozens of corrosion holes” at reactor vessels and in another says that eight holes have been documented. In all cases, there is another containment mechanism that would provide a barrier to radiation release. Below, we examine why these claims are unwarranted and why the AP1000 design certification process should continue as designated by the NRC. Myth: In the AP1000 reactor design, the gap between the shield bu...
Comments
One point that I wish Dr. Bonometti had discussed is an implication of the extraordinary level of safety of the LFTR: that it could be located close enough to large population centers to provide district heating and cooling (via the ammonia absorption cycle) from the ~50% of heat normally wasted by any type of plant sited in the hinterlands. Such a cogeneration, or combined heat and power plant fueled mainly by waste wood but partially by natural gas provides downtown St. Paul, MN with heated and chilled water via underground insulated pipes (it also sells electricity to the grid). Similar plants are common in Europe, especially so in Denmark where they have substantially reduced the use of oil and natural gas for heating/cooling.
High capital cost, low fuel cost power plants (nuclear and to some extent waste wood-fired biomass) need to be operated 24/7 at 100% power as much as possible to reduce the capital component of the cost of a unit of electricity to its minimum. Comparatively, high fuel cost, low capital cost power plants (oil, natural gas and coal in decreasing order of fuel cost) need to be operated as little as possible to reduce the fuel component of the cost of a unit of electricity to its minimum. In a rational world, nuclear plants supplemented by coal plants would provide the base load and some portion of daily cycling and natural gas-fired plants, rooftop photovoltaic (eventually) and wind turbines would handle the relatively small amount of remaining demand (peaking). Biomass is a niche player, but well-suited for base load. Therefore a city's relatively constant demand profile for heating/cooling/electricity is more closely matched by the economic operation profile of nuclear (&coal) plants than by that of the other plants. An advantage of the LFTR over other reactor types is that daily power cycling would be a snap as there is essentially no Xenon poisoning and the fuel is liquid so there would be no concern about power changes damaging fuel cladding. This LFTR advantage would reduce somewhat the need for higher fuel cost plants (e.g., coal) for daily cycling but would not diminish the need for peaking plants.
Don't get uptight just because someone pronounces one of the other correct ways.
----
Back when atomic energy was the stuff of science fiction, the writers usually picked thorium as the fuel, it seemed the most logical choice.
What would prevent you from heating the material to 800C, then piping it into an electric furnace for that extra 150C of heating. The electric furnace can be powered from the waste heat of the reactor.
Seems a lot easier (and safer) than trying to get the whole reactor to work at 950C, although less efficient. It would also allow you to throttle the electrical output of the plant by controlling how much H2 was being generated at the moment, something that Nukes are normally quite bad at.
Expect that the anti-nuke Luddites will be unimpressed with MSR technology. It will still produce waste and, worse from their perspective, it reprocesses its fuel. The production of nuclear fuel (by breeding or otherwise) is evil unless it is being done by the Islamic Republic of Iran.
Nuclear reactions depend on nuclear fuel density. If the fuel density drops then the reaction stops. In the LFTR, the molten salt expands as it gets hot. If it gets too hot, it expands too much and the reaction stops.