Skip to main content

A Nuclear-Powered Space Rover Lands on Mars, Brings New Hope for Space Exploration

“If anybody has been harboring doubts about the status of U.S. leadership in space, well, there’s a one-ton, automobile-size piece of American ingenuity, and it’s sitting on the surface of Mars right now.”
lat-bcpix_m8bwzdpd20120806073854This statement came from John Holdren, President Obama’s science advisor, this morning following the landing of a 2,000-pound nuclear-powered space rover, Curiosity, on the surface of Mars. This marks the first time that NASA has ever safely landed a human-made object of this size and weight on the surface of Mars, a notable feat in American engineering.

Early reports from The New York Times describes the rover’s landing on the Red Planet like a scene in a movie script:
As the drama of the landing unfolded, each step proceeded without flaw. The capsule entered the atmosphere at the appointed time, with thrusters guiding it toward the crater. The parachute deployed. Then the rover and rocket stage dropped away from the parachute and began a powered descent toward the surface, and the sky crane maneuver worked as designed. 
“Touchdown confirmed,” Allen Chen, an engineer in the control room, said at 1:32 a.m. Eastern time, followed by cheers, hugs and high-fives. 
Two minutes later, the first image popped onto video screens — a grainy, 64-pixel-by-64-pixel black-and-white image that showed one of the rover’s wheels and the Martian horizon. A few minutes later, a clearer version appeared, and then came another image from the other side of the rover.
This pivotal moment in space exploration is even more exciting because of the far-reaching implications Curiosity’s mission has for the nuclear energy field. The space rover is fully outfitted with an advanced nuclear power system called the Multi-Mission Radioisotope Thermoelectric Generator, or MMRTG (for those who like acronyms), to power its large frame over the two-year mission.

Mars CuriosityAshwin Vasavada, deputy project scientist for the Mars Science Laboratory, explains that Curiosity needed a good, strong, reliable source of power to keep it going over its two-year mission. Other Mars Exploration Rovers—Spirit and Opportunity—have used solar panels for a source of power, but the engineers have found that they did not have enough power at times to complete their objectives because of dust settling on the panels or during the short days of winter. With Curiosity measuring two times bigger, five times heavier, and holding 15 times the weight in scientific equipment than the former space rovers, Vasavada said that the space rover needed a power generator that would be guaranteed to charge its battery year-round in all types of harsh conditions, which is why the laboratory turned to nuclear energy.

Curiosity’s generator serves a dual purpose: it provides electrical power and heat to the rover. The generator has a capacity of 110 watts of electrical power, which is used to continuously charge the rover’s battery and keep the rover moving and operating its technical devices. The heat that is created can then be pumped off using pipes, but maintain the warmth on the inside of the rover, including the scientific instruments.

Vasavada explains the reasons for selecting the nuclear-powered generator and how it works in the following video:

For a more technical explanation on how the generator works, see this description by Canadian Energy Issues:
Curiosity’s electronics are powered by what’s called a radioisotope thermoelectric generator (RTG). An RTG is a device that uses the heat from disintegrating radioisotopes to generate an electric current. In Curiosity’s case the radioisotope is plutonium-238, a strong alpha emitter with a half-life of around 88 years. A disintegrating Pu-238 atom ejects an alpha particle from its nucleus with an energy of 5.5 million electron volts. The ensuing collision between that ultra-high-energy particle and the first material it encounters generates a lot of heat.  
All missions to Mars and beyond are powered with Pu-238. By the time you get out to Mars, solar energy is too weak to generate meaningful amounts of electricity.
Over the course of its mission, Curiosity will be searching for indications that Mars was once habitable, such as examining rocks and other organic matter and sending images and samples back to Earth. The Washington Post says this is the first time NASA has embarked on a mission to Mars since the Viking missions in the 1970s. Since then, scientists have discovered that the planet was once wetter and warmer, which signals improved possibilities for life on the planet.

Photos from Curiosity’s first day on Mars are available on NASA’s website. You can also follow the space rover’s mission on Twitter: @MarsCuriosity and on Facebook: NASA’s Curiosity Mars Rover.

Have thoughts to share about Curiosity? Join the conversation about the space rover on NEI’s Facebook page.

For more information on nuclear energy’s applications in outer space, see NEI’s website.
Photo captions: Image #1: One of the first test images from NASA’s space rover Curiosity upon landing on Mars to signal that everything was operational (credits: NASA TV, via The New York Times).

Image #2: Engineers work on a replica of NASA’s space rover Curiosity at the Jet Propulsion Laboratory (credits: Damian Dovarganes, Associated Press, via The Los Angeles Times).


jim said…
My hat’s off to NASA/JPL too and can’t wait till the lab starts rolling!
This is also a magical time for NASA to really start mentioning that Curiosity is nuclear powered to the visitors to its facilities to help de-Darth Vaderize a source of energy. At the Smithsonian, they just couldn’t mention enough over models of Spirit and Opportunity that they were solar powered. This is where nuclear energy can positively shine to the public in a friendly way, and NASA shouldn’t act grudging to mention it!

James Greenidge
Queens NY
Plutonium-238 also powered the Voyager spacecraft that gave us the spectacular images of Jupiter, Saturn, Uranus, Neptune, and several of their moons.

So plutonium 238 has had a long history as a beneficial source of energy for space exploration.

Marcel F. Williams
richardw said…
Yeah a RTG on another planet is great.

As long as it leaves earth in one piece then I am all for it.

Go de-darth vaderise something else though, cause this is nowhere near the same thing as earth based nuclear power tech.
jim said…
Re: richardw said...

This is not personal, I'm just looking for info leads. Can you tell me -- specifically if possible -- where you obtained your views on things nuclear? I'd just like to trace and examine info sources, that's all.


James Greenidge
Queens NY
Engineer-Poet said…
Sadly, it looks like richardw just made a drive-by and isn't going to respond.  I'd love to see his reading list.

I don't think he quite gets the irony of his adjuration that we "de-darth vaderise something else".  Darth Vader is a fictional character, acted by various guys in a black costume and voiced by James Earl Jones.  The parallel to the designation of nuclear power as "the bad guy" is spot-on.

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…