Skip to main content

To Space and Beyond With Nuclear Energy

One of the things that you can do with nuclear energy is produce a lot of energy for a long length of time with an exceptionally small amount of uranium – or dilithium crystals, whichever is available. So if you need energy for an extended period of time – say, the time it takes to get from Earth to Mars, then nuclear energy has considerable utility – and you don’t have to worry about dust blocking the sun, as on some of the solar driven rovers.

Now, a group of scientists are thinking bigger – sending astronauts to Mars and beyond and doing it in a way that could get them there and back successfully. This is a barrier that hasn’t been breached, so while this project is in early days, it’s very intriguing.

A team of researchers, including engineers from the Los Alamos National Laboratory, this week reported their successful demonstration of a new concept that could provide reliable nuclear power for space exploration. The technology is still years away from the warp drive of Star Trek, but it could provide a means of propulsion for space travel beyond the moon.

I’m not sure warp speed is even a goal, but fine – it’s hard to avoid Star Trek in this context. And as long as this is what you’re up to, why not dream big? Pluto, anyone?

"We could have a nuclear-powered rocket that could get to Pluto in two years; whereas a chemical rocket would take seven years," said Paul Czysz, Ph.D., professor of aeronautical engineering at Parks College.

"We think it is the enabling technology," he told TechNewsWorld. "If you are really going to do something on this scale, you need to have something other than chemical rockets."

This article doesn’t say so, but even with this as a fanciful extension of the project, you probably couldn’t get astronauts out to Pluto and back with this technology – at least, not alive. And keeping the space travellers alive is a goal of this project.

Anyway, here’s what this gaggle of rocket scientists are up to:

"This is really a new old system, as it is a new platform build on an old technology," said Michael Podowski, Ph.D., professor of nuclear engineering at Rensselaer Polytechnic Institute.

"The Stirling engine is an old one," he pointed out, but "the concept is very healthy. The nuclear factor is not an issue at this point. However, [achieving] efficiency will require a lot more work.

"While the concept is interesting and it makes good use of the elements involved," Podowski told TechNewsWorld, "it will require more work. It is as simple as that."

How old is the Stirling engine? – think 19th century old. The article doesn’t really describe its characteristics very well, so I went over to How Stuff Works for a fuller explanation.

The Stirling engine is a heat engine that is vastly different from the internal-combustion engine in your car. Invented by Robert Stirling in 1816, the Stirling engine has the potential to be much more efficient than a gasoline or diesel engine. But today, Stirling engines are used only in some very specialized applications, like in submarines or auxiliary power generators for yachts, where quiet operation is important. Although there hasn't been a successful mass-market application for the Stirling engine, some very high-power inventors are working on it.

I guess the writer means the deep space scientists as well as others. But what is it about the Stirling engine that might work in a nuclear application? I’d point to these:

The gasses used inside a Stirling engine never leave the engine. There are no exhaust valves that vent high-pressure gasses, as in a gasoline or diesel engine, and there are no explosions taking place. Because of this, Stirling engines are very quiet.

So it appears to have a variation on a containment chamber. But it looks like the nuclear reaction would happen outside the engine:

The Stirling cycle uses an external heat source, which could be anything from gasoline to solar energy to the heat produced by decaying plants. No combustion takes place inside the cylinders of the engine.

A possible scenario would be to use reactors like those on nuclear submarines to drive the engine.

I’m still curious that no one has found a sizeable niche for these engines – I tend to be suspicious of “miracle” technologies that can’t gain traction – especially in nearly 200 years. That can mean scalability problems – I’ve read that it’s a big mechanism for the power it can generate. On the other hand, the engine’s ability to output a constant level of energy without much variation likely hurts it in an automotive context, but might be beneficial for a rocket.

In any event, this is an interesting development that might allow humanity to break through the artificial barrier between the moon and the rest of space. Maybe we won’t have to wait for dilithium crystals to send astronauts to Pluto.

Comments

jim said…
One fun speculation is where we could've been by now hadn't highly successful atomic space drive research such as Project Rover hadn't been nipped in the bud in the late sixties. I recall them boasting about six month round trips to Mars in the late 1980s! That suggests that we could've been wading around on Titan by now!
Nuclearphobia sure took its toll!

James Greenidge
Queens NY
Anonymous said…
Project Rover was cancelled in 1972, as the US space program was winding down generally after the Apollo moon landings. I don't see any evidence that its abandonment was due to "nuclearphobia." Richard Nixon wasn't exactly anti-nuclear; in fact, the next year he announced his energy plan which foresaw 1,000 power reactors operating in the US by 2000.
jim said…
Folksy and gentlemanly Dr. Robert Jastrow at NASA's Columbia U office here then mentioned at a NY Historical Society forum I attended with the Campaign For Space and L-5 Society circa 1984-5 (poor brilliant Judith Resnik was a guest there too. Unreal) about how the budding Earth Ecology and antiwar movement was impacting non-naval nuclear development and how horrified "eco" papers were of open-air nuclear rocket engine tests as well as stroking apprehensions of Russian nuclear satellites, shelving enthuse for US nuclear reactors in space. They very badly wanted nuclear engines for Mars. The Jackass Flats engineers ought have books pining that. (Jastrow also displayed a cool post-Apollo space station chart of two Skylab-type hulls connected by long cables rotating about a nuclear reactor "hub" for artificial gravity which NASA ought dig out for public viewing). He mentioned how difficult it was in the Cold War nuclear anything fear climate to lobby for RTG missions beyond Viking and how Galileo almost started off as a underpowered solar-paneled concept like Juno is. Unfortunately Nixon's grand nuclear plan ended up just that; just another gov't proposal since he had a hotel to worry about.

James Greenidge
Queens NY
Anonymous said…
I am left wondering how they plan to use this plentiful electrical power to propel a spacecraft. Ion engines? Can those actually reduce a Mars trip to 2 years? I always thought ion engines were only good if you weren't in a hurry?
jim said…
The basis for early atomic rocket engines was to literally pump any working fluid right through a hot reactor to create a high impulse exhaust. It would even work with water were you so desperate, as nicely described in the movie "Destination Moon" in the early 1950's!

James Greenidge
Queens NY


Engineer-Poet said…
"This article doesn’t say so, but even with this as a fanciful extension of the project, you probably couldn’t get astronauts out to Pluto and back with this technology – at least, not alive."

Why not?  If you can hold temperature and regenerate water and atmosphere, food isn't that big of an issue.  A recent development which showed that certain archaebacteria can convert CO2 and electrons to methane with 80% coulombic efficiency (oxygen evolved at the anode) suggests that life support can be done with little more than a reliable source of electricity for an energy source.  (I'm not sure what you'd do with the methane, but there have to be any number of chemotrophic bacteria which could eat it and become a food source for something like zooplankton.  Zooplankton feed fish.  You might be able to go from CO2 to tilapia in 3 steps.)

"I’m still curious that no one has found a sizeable niche for these engines – I tend to be suspicious of “miracle” technologies that can’t gain traction – especially in nearly 200 years."

They're external-combustion, meaning that heat has to be pushed through a wall into a working fluid which has to be at very high pressure to get good power density.  This requires high-strength, high-temperature alloys and precise fabrication (contrast automotive engines made of aluminum).  This makes them expensive.

What the Stirling brings to space missions is much greater thermal efficiency than thermoelectric converters.  This means a smaller heat source and much smaller radiators.

Popular posts from this blog

Fluor Invests in NuScale

You know, it’s kind of sad that no one is willing to invest in nuclear energy anymore. Wait, what? NuScale Power celebrated the news of its company-saving $30 million investment from Fluor Corp. Thursday morning with a press conference in Washington, D.C. Fluor is a design, engineering and construction company involved with some 20 plants in the 70s and 80s, but it has not held interest in a nuclear energy company until now. Fluor, which has deep roots in the nuclear industry, is betting big on small-scale nuclear energy with its NuScale investment. "It's become a serious contender in the last decade or so," John Hopkins, [Fluor’s group president in charge of new ventures], said. And that brings us to NuScale, which had run into some dark days – maybe not as dark as, say, Solyndra, but dire enough : Earlier this year, the Securities Exchange Commission filed an action against NuScale's lead investor, The Michael Kenwood Group. The firm "misap

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin