Skip to main content

CNO Summit Diary: Chasing lessons in safety at Fukushima by chasing the sun

The following post was sent to us via email by John Keeley, who is travelling with a delegation of American chief nuclear officers in Japan this week. You can follow John's observations on Twitter by following @nei_media and the #CNOSummit hash tag.

In summer, in morning or early afternoon, when a traveler moves by air many thousands of miles from east to west, he never quite escapes the bright sun of day. My communicator colleagues here in Japan all noted the difficulty we had securing substantive rest on our flights over the Pacific during this novel journey. We were ever chasing the sun, they said.

The American chief nuclear officers we're following with our cameras and electronica this week have been, ever since their arrival here, in perpetual motion in pursuit of safety lessons. In making the unprecedented and extraordinary commitment to "put eyes on the problem" created by the 3/11 Fukushima tragedy, our CNOs, it occurs to me, are following a global commitment to safety much as we communicators were following the sun.

Remember: this is a trip undertaken *after* U.S. CNOs had unanimously adopted significant safety enhancements at all 63 operating stations in response to the Fukushima accident.

The CNOs I ran into late on Sunday night were every bit as bleary-eyed and time-zone tortured as we communicators, but about 15 of them awoke at the crack of dawn Monday morning in order to board buses and trains to Kashiwazaki Kariwa, the largest nuclear generating station in the world with a capacity of 8200 MWs and 5400 employees.  Since 2007 the station has invested almost $2 billion dollars fixing earthquake damage and installing post-Fukushima modifications. There were significant safety lessons to be learned in seismic and flooding space at Kashiwazaki, and so our CNOs bused hours across this island to learn them.

They returned from that site about an hour before meeting their Japanese CNO counterparts at Monday night's welcoming reception. There's no rest for the safety-lesson-craving weary on this trip, and well before a new workday had started in Tokyo on Tuesday every American CNO was back on a tour bus, this time headed for site visits at both Fukushima Daini and Daiichi. We'll have a lot more to say and illustrate about those two extraordinary site visits in the days ahead, but at the end of a hot Tuesday of touring the CNOs were still very much in motion, still very much  in learning mode.

Darkness was fast setting upon our tour, but instead of heading to our new hotel and a badly needed hot meal our buses trudged slowly through a town called Tomioka. It's a seaside town quite near both Fukushima plant sites, and on March 11, 2011, it knew 16,000 residents. It was a community known in summer for festivals and parades.
Tomioka. Photo used under Create Commons License through Wikipedia
Today it's devoid of human existence, devastated by the tsunami and uninhabitable by radiological fallout. Unchecked nature is overgrowing much of what had been developed and thriving little more than two years ago.

Fallout from the Daiichi accident delivers 1-3 millisieverts microsieverts an hour in Tomioka. The Japanese government has begun decontamination efforts for the town, and there is a plan to have is habitable by 2017, but today it is a sobering wreck of abandonment. Our CNOs wanted to see with their very own eyes the ultimate consequences of a day gone very wrong at a plant.

I wish them all some early and deep shuteye tonight. They're off to freshly pursue safety lessons through the total  sun again of tomorrow.


jimwg said…
Excellent report! Please put into layman's perspective the millisievert readings in Tomioka, i.e, compared to Central Park New York City, Denver, etc. That's more than just helpful: It's vital to translate technospeak for a science-challenged public who are easily swayed by exaggerated FUD claims.

James Greenidge
Queens NY

Anonymous said…
"Fallout from the Daiichi accident delivers 1-3 millisieverts an hour in Tomioka."

Are you sure that isn't microSv/hour?
seth said…
"The central part of the town that used to be home to some 10,000 residents was designated as a residence restriction zone, with annual radiation doses estimated to be between 20 millisieverts and 50 millisieverts."

Sometimes I wonder if NEI isn't 100% Big Oil funded.
Anonymous said…
For James: Estimates of the average exposure from radon in the U.S. contribute approximately 228 mRem/year. With 8760 hours in a year, this would be 0.03 mRem/hr. 3 Micro Sieverts equates to 0.3 mrem per hour, so 10 times normal when “just” using radon exposure (3 Milli Sieverts would be 300 mrem per hour).
jimwg said…
Anon, thanks! You're beautiful in the technical accuracy arena, and if you can apply comparative Sieverts measurements to layman comprehension levels such as sieverts readings in New York City, in a home, a cigarette, being in a stone office building, living in Denver, etc, you'd hit the need on the head for the nuclear community to translate highly complex technical terms to everyday layman perspectives. It is the curse of scientists and engineers that they overlook that most people don't perceive or contemplate the world on their plane. Antis have royally exploited pro-nukers issuing raw complex techno-facts to a bewildered science-clueless public as a part of FUD.

James Greenidge
Queens NY
anonymous-one said…
Well the difference between 0.3 mRem per hour and 300 mRem per hour is quite significant; that's why I wanted to hear from the author whether the actual dose rate was 3 millisieverts or 3 microsieverts. It is a factor of 1000 (of course) but, if you pick a dose threshold (say 10 Rem) you would reach that in just over a single day at 3 millisieverts/hr whereas it would take almost four years at 3 mictosieverts/hr. Like I said, it's a big difference and in this range it is crucial to get the units correct.
David Bradish said…
Thanks anon for looking closely. You are correct, it is microsieverts, not millisieverts.

Popular posts from this blog

A Billion Miles Under Nuclear Energy (Updated)

And the winner is…Cassini-Huygens, in triple overtime.

The spaceship conceived in 1982 and launched fifteen years later, will crash into Saturn on September 15, after a mission of 19 years and 355 days, powered by the audacity and technical prowess of scientists and engineers from 17 different countries, and 72 pounds of plutonium.

The mission was so successful that it was extended three times; it was intended to last only until 2008.

Since April, the ship has been continuing to orbit Saturn, swinging through the 1,500-mile gap between the planet and its rings, an area not previously explored. This is a good maneuver for a spaceship nearing the end of its mission, since colliding with a rock could end things early.

Cassini will dive a little deeper and plunge toward Saturn’s surface, where it will transmit data until it burns up in the planet’s atmosphere. The radio signal will arrive here early Friday morning, Eastern time. A NASA video explains.

In the years since Cassini has launc…

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.


The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.

What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why Nuclear Plant Closures Are a Crisis for Small Town USA

Nuclear plants occupy an unusual spot in the towns where they operate: integral but so much in the background that they may seem almost invisible. But when they close, it can be like the earth shifting underfoot., the Gannett newspaper that covers the Lower Hudson Valley in New York, took a look around at the experience of towns where reactors have closed, because the Indian Point reactors in Buchanan are scheduled to be shut down under an agreement with Gov. Mario Cuomo.

From sea to shining sea, it was dismal. It wasn’t just the plant employees who were hurt. The losses of hundreds of jobs, tens of millions of dollars in payrolls and millions in property taxes depressed whole towns and surrounding areas. For example:

Vernon, Vermont, home to Vermont Yankee for more than 40 years, had to cut its municipal budget in half. The town closed its police department and let the county take over; the youth sports teams lost their volunteer coaches, and Vernon Elementary School lost th…