Skip to main content

EPA’s Clean Power Plan Needs Nuclear Energy On The Menu

Matt Wald
The following is a guest post from Matt Wald, senior director of policy analysis and strategic planning at NEI.

It’s so obvious that it shouldn’t bear repeating, but it does: If you’re worried about climate change, one early, easy remedy is to preserve nuclear power plants that are already running. If you are facing limits on carbon emissions, don’t shut down perfectly serviceable merchant nuclear plants, just because cheap natural gas has left them, for now, a few bucks out of the money in the competitive electricity markets.

Last Thursday the National Association of Clean Air Agencies, a group made up of officials from 42 states and the District of Columbia, plus 116 metropolitan areas, released its 465-page “Menu of Options” for complying with the Environmental Protection Agency’s Clean Power Plan (Section 111 (d) of the Clean Air Act).

We could quibble with some details, like describing nuclear technology as “mature.” It is highly developed, but it has evolved markedly in the last 20 years, and that will continue. Don’t discount the idea of new designs and fresh reactor concepts that will change the energy world in the 2020s or 2030s.

We could also argue with the report’s characterization of nuclear power as not renewable; when circumstances favor it, the world will build plants that make more fuel than they consume, and can go back to pull energy resources out of spent fuel.

But the menu makes two very clear points. First, drawing on a finding of the EPA, it concludes, “preserving the availability of existing units that might otherwise be retired is a cost-effective way to reduce GHG emissions.” (In fact, taking a reactor out of the mix now is a bit like trying to pilot a ship through a storm, deciding that it will be necessary to bail, and instead of pumping water out of the bilge, pumping it in.)
Nuclear energy. Down in the weeds, but in a sweet spot.
And second, “zero emissions” are never precisely zero, but they get pretty close. The study lists a cradle-to-grave, “lifecycle” estimate of emissions, including construction, fabrication, fuel processing, etc, for twelve technologies, based in hundreds of separate studies. The handbook gives an upper and lower bound. Nuclear is, to use the technical term, down in the weeds, lower than biopower and photovoltaics, in the ballpark with geothermal, and a smidgen above wind. Combined cycle natural gas, which rules the market for the time being – as long as carbon emissions are completely free, and emissions of other air pollutants are not counted in dollar terms – are about ten times higher; coal, depending on the technology, is twelve to fifteen times higher.

The handbook also compares “levelized costs,” (see below) that is, costs that take into account fuel, construction expense, and the lifetime of the asset. These, too, are expressed in a range. For the central estimate, new nuclear is, in fact, pricey, but not nearly as expensive as the two forms of solar – photovoltaic cells, or thermal systems, which use the sun’s heat to boil water.
Priced more competitively than you might think.
Energy from wind can be slightly cheaper, but you don’t get to pick when the wind blows.


jim said…
Re: "...preserving the availability of existing units that might otherwise be retired is a cost-effective way to reduce GHG emissions.”

Start with Vermont Yankee for one, EPA.

Sadly, talk is cheap. VERY cheap. Even in matters of global environmental emergencies.

James Greenidge
Queens NY

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.

Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …