Skip to main content

Swedish Study Examines Nuclear and Climate Change

From the land of lingonberries and aquavit:

In just two decades Sweden went from burning oil for generating electricity to fissioning uranium. And if the world as a whole were to follow that example, all fossil fuel–fired power plants could be replaced with nuclear facilities in a little over 30 years.

And if you did this?

Such a switch would drastically reduce greenhouse gas emissions, nearly achieving much-ballyhooed global goals to combat climate change. Even swelling electricity demands, concentrated in developing nations, could be met.

The Scientific American article says that this would be a heavy lift. Would it? The interesting thing is that someone worked out the numbers and figured it all out – well, at least the industrial and manufacturing parts. That someone would be Staffan Qvist, a physicist at Sweden’s Uppsala University.

Sweden gets about 50 percent of its electricity generation from hydro power and 30 percent from nuclear energy. Midnight Sun Land has had mixed feelings about nuclear, passing a bill to phase it out, then reversing course and deciding that new reactors can be built at existing facilities but only to replace end-of-life reactors. This torturous approach is a bit eye rolling – just split the atom, don’t split the difference. It’s as though Sweden has learned that nuclear energy has benefits it wants to leverage yet doesn’t want to seem too enthusiastic about it.

Scientific America’s write-up is good, though we wondered if we could get a look at Qvist’s study. And indeed, it is online and in English to boot. The title is (deep breath) “Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data.” The regions considered are Sweden and France.

Some features of the report seem obvious, but are not often stated in this context and can easily be overlooked as useful factors. Some of this reflects the growth of the industry over the last 50 years and what that means to countries who now want to implement nuclear energy now:

Countries adopting or expanding their nuclear production capacity today have comparatively little need to develop indigenous designs and supply chains in the way Sweden did, since turn-key products are available from a number of vendors on an open competitive market. It is considerably easier to buy plants and nuclear fuel internationally today than it was in the early days of the Swedish nuclear program, with a larger number of mature, internationally marketed commercial designs on offer today compared to the situation of the mid 1960s.

Nine of Sweden’s current fleet are home-grown boiling water reactors while three are American-sourced pressurized reactors. So Sweden did design and build most of its plants itself.

A lot of the paper is, as you’d expect, fairly dense, comparing coal to nuclear to determine their relative output. It all supports a conclusion that is loud and clear.

No renewable energy technology or energy efficiency approach has ever been implemented on a scale or pace which has resulted in the magnitude of reductions in CO2-emissions that is strictly required and implied in any climate change mitigation study—neither locally nor globally, normalized by population or GDP or any other normalization parameter.

The results indicate that a replacement of current fossil-fuel electricity by nuclear fission at a pace which might limit the more severe effects of climate change is technologically and industrially possible—whether this will in fact happen depends primarily on political will, strategic economic planning, and public acceptance.

I can’t imagine this being said any plainer.

Comments

Popular posts from this blog

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…