Skip to main content

What do thorium reactors and girls who can cite the periodic table from memory have in common?

Answer: Kirk Sorensen. Kirk just got back from England where he gave a successful and compelling presentation on liquid fluoride thorium reactors at the Manchester Town Hall.
I should have known right from the moment I walked in the building that this was going to go well. Right inside the main door are two large statues; one of James Prescott Joule, the famous physicist and thermodynamicist, and the other of John Dalton, chemist and pioneer of atomic theory. As I walked by, Joule whispered that I better tell them a bit about thermodynamics, and Dalton reminded me that chemists could build the best reactor of all.

...

I went through the process of converting thorium to energy and showed how a LFTR uses liquid fluoride fuel to carry the uranium and thorium in a two-fluid arrangement designed to follow the natural processes of thorium's conversion to protactinium, uranium, and then to energy. I described the Molten Salt Reactor Experiment and how it demonstrated that this was a real and feasible approach to take to extracting the energy from thorium. I described a more modern version--the Liquid-Fluoride Thorium Reactor--that would couple the fluoride reactor to a closed-cycle gas turbine and enable the extraction of energy from thorium at an efficiency roughly 300 times greater than we currently get from uranium in existing reactors.

...

This radical improvement in efficiency means that we could supply world energy needs with about 6000 tonnes of thorium rather than the 65,000 tonnes of uranium, 5 billion tonnes of coal, 32 billion barrels of oil, and 3 trillion cubic meters of gas we use today.

Thorium resources are abundant and a single thorium site in Idaho could provide nearly all the world's yearly demand for thorium...
And how did he feel about the event?
It was a great experience!
Be sure to stop by and read the rest of his post and to also find out who he got to meet there. On a lighter note, check out Kirk's two daughters, Zoe (7) and Kaija (4, just turned 5), recite the periodic table from memory. I hope my future kids turn out to be as smart as them!

Comments

djysrv said…
Bravo to NEI for reaching out to the nuclear blogging community.

This video was produced during the annual meeting of the American Nuclear Society. I was there and watched it happen live.

At the meeting four the nation's most prolific nuclear bloggers held forth during an ANS sponsored panel for three hours to an audience of over 100 people on how to blog about nuclear energy.

It has been said that nuclear blogging achieved critical mass at ANS Atlanta. You can read about it at the Energy Collective

Popular posts from this blog

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

A Billion Miles Under Nuclear Energy (Updated)

And the winner is…Cassini-Huygens, in triple overtime.

The spaceship conceived in 1982 and launched fifteen years later, will crash into Saturn on September 15, after a mission of 19 years and 355 days, powered by the audacity and technical prowess of scientists and engineers from 17 different countries, and 72 pounds of plutonium.

The mission was so successful that it was extended three times; it was intended to last only until 2008.

Since April, the ship has been continuing to orbit Saturn, swinging through the 1,500-mile gap between the planet and its rings, an area not previously explored. This is a good maneuver for a spaceship nearing the end of its mission, since colliding with a rock could end things early.

Cassini will dive a little deeper and plunge toward Saturn’s surface, where it will transmit data until it burns up in the planet’s atmosphere. The radio signal will arrive here early Friday morning, Eastern time. A NASA video explains.

In the years since Cassini has launc…