Skip to main content

The Net Positive of Mining Uranium

A team of Australian researchers has published a paper showing that mining uranium produces greenhouse gases. Yes, I know, it's a stop-the-presses moment:

The case for nuclear power as a low carbon energy source to replace fossil fuels has been challenged in a new report by Australian academics.

It suggests greenhouse emissions from the mining of uranium - on which nuclear power relies - are on the rise.

Consider what we might call the principle of net negatives: if getting from point A (greenhouse gas emitting plants) to point C (non-greenhouse gas emitting plants) takes you through point B (greenhouse gas emitting uranium mining), then see if the good outweighs the bad enough to accommodate it.

This sounds an awful lot like "the ends justifies the means" but no: our current reality just doesn't provide alternatives. How do you create greenhouse-free energy generators without producing greenhouse gasses? You have to use the tools you've got. (Al Gore got dinged for the energy suck of his big, electricity-guzzling house. Even though he found ways to mitigate the complaint, what did one expect: candles in the windows?)

Is the increased production of greenhouse gasses via uranium mining worth taking on if the end result replaces greenhouse producing energy sources with non-greenhouse producing energy sources? Luckily, the article, or at least one of its sources, answers this question for us:

"Even in the worst case scenario for CO2 emissions, the impact of nuclear on greenhouse emissions is still very small compared with fossil fuels," he explained.

"He" in this case is Thierry Dujardin, deputy director for science and development at the Nuclear Energy Agency. This is part of the Organization for Economic Cooperation and Development in Paris; and France, more than any other country, finds nuclear energy incroyable.  (The OECD is intergovernmental, though, not French per se. We cannot even conclude that Monsieur Dujardin is French.)

So there you have it: a net positive. Let's ask Australian researchers to turn their minds elsewhere for awhile; on this subject, I'm just a little suspicious of their motives.

Comments

DV8 2XL said…
Uranium mining produces CO2 is new stick that the antinuclear movement is going to try and beat us up with now that most of their other lies have been exposed.

However I do not read this paper as being of much utility to the antinuclear movement as it does seem to supply reasonable base line numbers that can be applied to life-cycle greenhouse gas of nuclear issue, to show that indeed nuclear is among the lowest. To date we have missed this data, and it has prevented us from making real quantitative arguments on the subject.

Also this paper is notable for not invoking the van Leeuwen and Smith document which refreshing change for a study of the energy and greenhouse gas intensity of the nuclear fuel cycle.
robert merkel said…
It's worth reading the actual paper, which like dv8 points out, contains useful information. The two authors are known for their anti-nuclear views, but they're also academics and the journal is peer-reviewed.

The key information is the energy expenditure for mining and milling. In the worst case scenario published, assuming the assignment of the entire energy expenditure of the Olympic Dam mine to uranium production (it is mainly a copper mine), the emissions are a bit less than 400 tonnes of CO2 per tonne of uranium oxide produced.

If you need roughly 200 tonnes of ore per annum to get enough fuel for a 1 GW nuclear power station, that's 80,000 tonnes of CO2 per annum. By contrast, Hazelwood Power Station in Victoria, Australia, which has eight 200-megawatt coal-fired generating units, puts out roughly 17,000,000 tonnes of CO2 per annum...

Clearly, even assuming the use of low-grade ore (and Olympic Dam is very low-grade ore), the energy costs of mining will be manageable for the foreseeable future.
Ondrej Chvala said…
NEI, haven't you published some articles about that w.r.t. SLS controversy? I seem to remember energy payback time for a nuclear power plant to be about 18 months and another 18 months to pay back the energy needed for fuel fabrication etc. Within the (conservative) 40 years of the plant's life time this suggests EROEI=13 assuming 120 years lifetime EROEI=20. Is that correct?
David Bradish said…
ondrej,

Yes, we've published quite a bit on this subject. The latest was titled "Energy Payback Times for Nuclear." The data is based on this page from the World Nuclear Association and finds that the payback time for a nuclear plant including all stages is about one year.

Popular posts from this blog

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…