Skip to main content

Nuclear Energy R&D Strategy by EPRI and INL

Dan Yurman at Idaho Samizdat beat me to this story so I'm going to copy from him ;-):
A new report co-authored by the Electric Power Research Institute (EPRI) and the Idaho National Laboratory (INL) details how nuclear energy research, development, demonstration and deployment can help reduce U.S. carbon emissions and bolster energy security.

The report [pdf], A Strategy for Nuclear Energy Research and Development, outlines the research necessary to create options for the deployment of nuclear energy in the decades ahead. The report also examines nuclear energy’s relevance to nonproliferation and the need for the United States to maintain international leadership in developing nuclear energy.

...

The strategic plan defines six goals to expand the safe and economical use of nuclear energy:

1. Maintain today’s nuclear fleet of light water reactors
2. Significantly expand the fleet with advanced light water reactors
3. Develop non-electric applications for high-temperature reactors
4. Assure safe, long-term used fuel management
5. Assure long-term nuclear sustainability
6. Strengthen United States leadership internationally.

...

Total funding needs from government and industry for the proposed research agenda covering the initial 2010-2015 period are estimated at $3.5 billion.

Comments

Charles Barton said…
If I ever needed confirmation that thinking about the future of energy in general and nuclear energy in particular at INL leaves much to be desired, the EPRI/INL report provides ample evidence. All of the energy options considered by "A Strategy for Nuclear Energy Research and Development" are very expensive, and one Carbon Capture and Sequestration is impractical because of the energy input it requires. Were there no lower cost options, this might be acceptable, but the report does not consider the possibility of developing Molten Salt Reactor technology, despite its potential to be a lower cost alternative to all of the technologies mentioned in the report. Isn't the problem here that Molten Salt Reactor technology was not invented at INL, and therefore it gets no attention from INL researchers.
Anonymous said…
"does not consider the possibility of developing Molten Salt Reactor technology, despite its potential to be a lower cost alternative to all of the technologies mentioned in the report."

Interesting. Have there been economic analyses backing this conclusion? Citations?

And has anyone completed a commercial design for a MSR plant? I know there was an experiment-scale project in the 1960s but what advances since then?
Anonymous said…
There are, as yet, no modern design studies for MSRs that would include the new technologies that would likely be used (e.g., closed gas Brayton cycle power conversion rather than a steam cycle).

But the capital cost of a MSR would be very similar to the solid-fuel variant called an Advanced High Temperature Reactor (AHTR), which the DOE has been studying. Oak Ridge National Laboratory issued a report in 2004 that predicted that AHTRs would have capital costs appromately 55 to 60% of the cost of modular helium reactors (MHRs) and sodium fast reactor (SFRs).

So yes, it is likely that MSRs could be substantially less expensive than other types of reactors.
Charles Barton said…
Two Anonymous comments? Wow that takes a lof of courage.
Anonymous 1: You might start with "Cost of electricity from Molten Salt Reactors (MSR)" by R. W. Moir of Lawrence Livermore National Laborator
Nuclear Technology 138 93-95 (2002)10/2/2001
I have discussed numerous cost savings measures that Moir did not consider. See discussions in Nuclear Green, May 2008

Anonymous 2 relies on the circular argument that since there are no MSR research projects, there should be no MSR research, in fact MSR research is geing conducted in Russia and France. Your assertion that there are no cost advantages to MSR in comparison to Advanced High Temperature Reactor reactors. in fact MNSRs, have superior neutron economy because of continuous FP stripping. MSRs have superior safety because of of their negative coefficient of reactivity, and they are capable of both load following and serving in peak reserve capacity. MSRs can be mass produced, significantly lowering unit price, Finally, MSR fuel can be continuously reprocessed as can blanket salt. The cost of MSR fuel reprocessing is a small fraction of the price of solid fuel reprocessing. Additionally there is no fuel fabrication/refabrication expense.
Bill said…
Hey Charles, Anon#2 is agreeing with you about the potential cost of MSR technology, with the caveat that there's as yet no fully worked-out design to point to.
Anonymous said…
there are two different anonymous posters on this thread, Mr. Barton. I'm the first one, and I was just asking for information. I thought that was one of the purposes of this forum.

My job requires me to be anonymous when posting to blogs. Not sure why you feel the need to make it a manhood issue?

I was simply asking for more information about MSR R&D post-1960s, and you somehow decided I was outside your door with protest placards. This sort of reflexively defensive posture will not serve the industry well as its moves into the nuclear renaissance era. It doesn't fly with the public.

I'd still like to see some citations for the long list of advantages you cite in your most recent post. I'll check out the sources you do mention.
Helpful Heloise said…
FWIW Anonymous, this Blogger version allows visitors to create unique names w/out sacrificing anonymity. Just click the Name/URL radio button when posting a comment and you can fill in a name, any name. (See comments from "Dirty Euro" and "Man Overboard" in the above post.) Commenters with identities, even the most curious ones, help make for a more comprehensible conversation.

Popular posts from this blog

Knowing What You’ve Got Before It’s Gone in Nuclear Energy

The following is a guest post from Matt Wald, senior director of policy analysis and strategic planning at NEI. Follow Matt on Twitter at @MattLWald.

Nuclear energy is by far the largest source of carbon prevention in the United States, but this is a rough time to be in the business of selling electricity due to cheap natural gas and a flood of subsidized renewable energy. Some nuclear plants have closed prematurely, and others likely will follow.
In recent weeks, Exelon and the Omaha Public Power District said that they might close the Clinton, Quad Cities and Fort Calhoun nuclear reactors. As Joni Mitchell’s famous song says, “Don’t it always seem to go that you don’t what you’ve got ‘til it’s gone.”
More than 100 energy and policy experts will gather in a U.S. Senate meeting room on May 19 to talk about how to improve the viability of existing nuclear plants. The event will be webcast, and a link will be available here.
Unlike other energy sources, nuclear power plants get no specia…

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…