Skip to main content

The Traveling-Wave Reactor

Traveling Wave Nuclear ReactorIntellectual Ventures, an invention company, believes they've developed a "new reactor design [that] could make nuclear power safer and cheaper." Published by MIT's Technology Review magazine:
a traveling-wave reactor requires very little enriched uranium, reducing the risk of weapons proliferation. (Click here for a larger diagram). The reactor uses depleted-uranium fuel packed inside hundreds of hexagonal pillars (shown in black and green). In a “wave” that moves through the core at only a centimeter per year, this fuel is transformed (or bred) into plutonium, which then undergoes fission. The reaction requires a small amount of enriched uranium (not shown) to get started and could run for decades without refueling. The reactor uses liquid sodium as a coolant; core temperatures are extremely hot--about 550 ºC, versus the 330 ºC typical of conventional reactors.

...

As it runs, the core in a traveling-­wave reactor gradually converts nonfissile material into the fuel it needs. Nuclear reactors based on such designs "theoretically could run for a couple of hundred years" without refueling, says John G­illeland, manager of nuclear programs at Intellectual Ventures.

Gilleland's aim is to run a nuclear reactor on what is now waste. ­Conventional reactors use uranium-235, which splits easily to carry on a chain reaction but is scarce and expensive; it must be separated from the more common, nonfissile uranium-238 in special enrichment plants. Every 18 to 24 months, the reactor must be opened, hundreds of fuel bundles removed, hundreds added, and the remainder reshuffled to supply all the fissile uranium needed for the next run. This raises proliferation concerns, since an enrichment plant designed to make low-enriched uranium for a power reactor differs trivially from one that makes highly enriched material for a bomb.

But the traveling-wave reactor needs only a thin layer of enriched U-235. Most of the core is U-238, millions of pounds of which are stockpiled around the world as leftovers from natural uranium after the U-235 has been scavenged. The design provides "the simplest possible fuel cycle," says Charles W. Forsberg, executive director of the Nuclear Fuel Cycle Project at MIT, "and it requires only one uranium enrichment plant per planet."

The trick is that the reactor itself will convert the uranium-238 into a usable fuel, plutonium-239. Conventional reactors also produce P-239, but using it requires removing the spent fuel, chopping it up, and chemically extracting the plutonium--a dirty, expensive process that is also a major step toward building an atomic bomb. The traveling-wave reactor produces plutonium and uses it at once, eliminating the possibility of its being diverted for weapons. An active region less than a meter thick moves along the reactor core, breeding new plutonium in front of it.

The traveling-wave idea dates to the early 1990s. However, Gilleland's team is the first to develop a practical design. Intellectual Ventures has patented the technology; the company says it is in licensing discussions with reactor manufacturers but won't name them. Although there are still some basic design issues to be worked out--for instance, precise models of how the reactor would behave under accident conditions--Gilleland thinks a commercial unit could be running by the early 2020s.

While Intellectual Ventures has caught the attention of academics, the commercial industry--hoping to stimulate interest in an energy source that doesn't contribute to global warming--is focused on selling its first reactors in the U.S. in 30 years. The designs it's proposing, however, are essentially updates on the models operating today. Intellectual Ventures thinks that the traveling-wave design will have more appeal a bit further down the road, when a nuclear renaissance is fully under way and fuel supplies look tight.

"We need a little excitement in the nuclear field," says Forsber­g. "We have too many people working on 1/10th of 1 percent change."
Sounds very promising! Be sure to watch the animated video as well.

Hat tip to FuturePundit.

Comments

Anonymous said…
Sounds a lot like a candle-type reactor. I just hope the fuel containment won't fail after a few decades. These reactor types always push mechanical fatigue to their limits on paper...
skyler said…
give it time. hopefully with a few more innovations in storage/containment ability this will become a viable solution in the days to come.
Patrick said…
I see a serious problem with this design, which is the neutron balance. Once the wave has traveled a bit through the bloc, something like half of the neutrons will be directed into the burned-up part and not contribute to the chain reaction, nor contribute to the breeding, and I don't see how you can keep this going. After all, a breeder needs 2 useful neutrons per fission (one for the chain, and one for the breeding), and with plutonium, you get at most 2.9 or so, so you can permit to loose overall at most 0.9 neutrons. But if you loose half of them (by geometry) you've already lost 1.4 or so.
Gunnar said…
Maybe the core innovation is a kind of Maxwell's demon who is able to direct the neutron's deflector shields effective axis towards the wave front.
Anonymous said…
make a sphere of fuel and start fission in the centre. what's the problem?

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…

Innovation Fuels the Nuclear Legacy: Southern Nuclear Employees Share Their Stories

Blake Bolt and Sharimar Colon are excited about nuclear energy. Each works at Southern Nuclear Co. and sees firsthand how their ingenuity powers the nation’s largest supply of clean energy. For Powered by Our People, they shared their stories of advocacy, innovation in the workplace and efforts to promote efficiency. Their passion for nuclear energy casts a bright future for the industry.

Blake Bolt has worked in the nuclear industry for six years and is currently the work week manager at Hatch Nuclear Plant in Georgia. He takes pride in an industry he might one day pass on to his children.

What is your job and why do you enjoy doing it?
As a Work Week Manager at Plant Hatch, my primary responsibility is to ensure nuclear safety and manage the risk associated with work by planning, scheduling, preparing and executing work to maximize the availability and reliability of station equipment and systems. I love my job because it enables me to work directly with every department on the plant…