Skip to main content

E. Coli and Recovering Uranium

Credit:  Rocky Mountain Laboratories, NIAID, NIH 
  
Scanning electron micrograph of Escherichia coli, grown in culture and adhered to a coverslip 
We thought to call this post “Diseased Waste,” but decided it wasn’t only inaccurate but sounded like a death metal band. When we hear E. coli, we think disease, though of course, the critters live in our intestines from about three days after our births onwards and only a few strains of it prove dangerous via food contamination. You can read about E. coli here.

But still, unfairly, the first thought was disease. So we were intrigued by this Science Daily article about the use of E. coli to retrieve uranium from otherwise exhausted mines and even as a vehical to clean up sites. The bacterium isn’t the key here, though – it’s efficacy for this purpose has been known for awhile – it’s the additive.

Here’s how the process works:

Bacteria, in this case, E. coli, break down a source of inositol phosphate (also called phytic acid), a phosphate storage material in seeds, to free the phosphate molecules. The phosphate then binds to the uranium forming a uranium phosphate precipitate on the bacterial cells that can be harvested to recover the uranium.

But previous methods were expensive. Enter inositol phosphate:

The discovery that inositol phosphate was potentially six times more effective as well as being a cheap waste material means that the process becomes economically viable, especially as the world price of uranium is likely to increase as countries move to expand their nuclear technologies in a bid to produce low-carbon energy.

And how cheap is cheap?

As an example, if pure inositol phosphate, bought from a commercial supplier is used, the cost of this process is £1.72 [$2.81] per gram of uranium recovered. If a cheaper source of inositol phosphate is used (eg calcium phytate) the cost reduces to £0.09 [$0.14] for each gram of recovered uranium.

Now, we cannot pretend to understand why it took so long to understand that calcium phytate could be used as an alternate source – its properties seem well understood – but maybe the Birmingham University group that undertook this project to were starting with an idea that had been long abandoned.

Well, if so, abandoned no more. Read the whole thing for a full explanation. Even allow for the usual disclaimer that college work often doesn’t scale well to production level, this has great potential.

Your friend, E. coli.

Comments

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…

Innovation Fuels the Nuclear Legacy: Southern Nuclear Employees Share Their Stories

Blake Bolt and Sharimar Colon are excited about nuclear energy. Each works at Southern Nuclear Co. and sees firsthand how their ingenuity powers the nation’s largest supply of clean energy. For Powered by Our People, they shared their stories of advocacy, innovation in the workplace and efforts to promote efficiency. Their passion for nuclear energy casts a bright future for the industry.

Blake Bolt has worked in the nuclear industry for six years and is currently the work week manager at Hatch Nuclear Plant in Georgia. He takes pride in an industry he might one day pass on to his children.

What is your job and why do you enjoy doing it?
As a Work Week Manager at Plant Hatch, my primary responsibility is to ensure nuclear safety and manage the risk associated with work by planning, scheduling, preparing and executing work to maximize the availability and reliability of station equipment and systems. I love my job because it enables me to work directly with every department on the plant…