Skip to main content

Vermont Yankee Nuggets and Blogroll Update

It’s been awhile since we added anybody to our blogroll. Today we have the pleasure of adding Nuclear Fissionary who Idaho Samizdat introduced several weeks back. Jack Gamble, main contributor at Nuclear Fissionary, has done an informative job of refreshing our memories on costs, capacity factors, Chernobyl and so on.

As well as Jack’s good work, this week has been a great week for pro-nuclear bloggers out there. As many who read here know, the debate about the Vermont Yankee nuclear plant is raging on. Atomic Insights knocked out some very useful information about how much total tritium leaked at VY as well as exposed the misinformation from Vermont Senate Pro Tem Peter Shumlin on Vermont Yankee.

Apparently many people in the Vermont state legislature believe solar provides 30 percent of Germany’s electricity; an achievement that gives hope for renewable advocates. Well, Rod and Meredith from Yes Vermont Yankee squashed that false info (solar provides less than one percent) as well as corrected the Pro Tem’s facts on cobalt from VY.

It’ll be interesting to see how this plays out. This error from the Pro Tem has made some press which hopefully will get state legislators thinking a bit more realistically about replacing VY if it’s shut down.

Besides trying to keep up with all the pro-nuclear bloggers’ great content, we’ve made a few calculations on our own about VY such as carbon dioxide implications if the plant shuts down.

VY’s Impact on the Regional Greenhouse Gas Initiative

For those who may not know, ten states in the Northeast (Vermont included) have come together to begin reducing CO2 emissions using cap and trade. By 2014, their goal is to have stabilized their emissions and by 2018, hope to have emissions 10% less than the 2009 emissions they budgeted for themselves.

When digging into this, the closure of Vermont Yankee, 620 MW, looks like will have little impact on Vermont with regards to meeting RGGI limits. What’s interesting, though, is that it looks like the state of Vermont planned ahead that VY could be closed and budgeted enough allowances that a gas plant plus a small amount of renewables will be able to meet the lost supply. What’s even more interesting, is that the percent difference between what was emitted over the past three years versus budgeted is the greatest for Vermont (highlighted below). The following table contains data from the RGGI website showing the ten state’s three-year average of CO2 emissions (2006-2008) as well as their final budgeted allowances.

CO2 Data for RGGI States (short tons)

image

Since Vermont only buys 55% of VY’s generation, the state needs to find about 2.7 million MWh per year for replacement power (see calculations below). If a gas plant replaces this power, then it is estimated to emit about 1.3 million short tons per year (almost half a short ton of CO2 is emitted per MWh generated by gas).

To meet RGGI targets by 2018, which is to reduce CO2 emissions by 10% from the 2009 budget (pdf), Vermont will have 1.1 million short tons for allowances by 2018. Thus, conveniently, a gas plant and a little bit of renewables should allow Vermont to satisfy its RGGI requirements. It’s almost like the people involved in the RGGI deal-making for Vermont knew that VY can’t be replaced without fossil-fuels, a fact that all of us in the nuclear community are well aware of.

<Aside> Interestingly enough, the ten states set up the allowance program such that they’re actually allowing themselves to be able to increase emissions by a total of 4 percent by 2018 compared to the average they’ve emitted over the past three years (see table above). Though, since 2000, the ten states have reduced CO2 emissions by 18 percent due to more gas and nuclear instead of coal and oil in New York.</Aside>

CO2 Emissions Increase

A few more nuggets: assuming Vermont receives its replacement power for Vermont Yankee from its US NERC electric region mix, the estimated increase in CO2 emissions for the state would be about 1.1 million metric tons per year, equivalent to adding about 218,000 passenger cars to the road. And that’s for replacing only 55 percent of the plant’s electricity, see below.

Calculations

According to Vermont’s 2005 electric plan (p. 4-6, pdf), Vermont utilities “have a 55% contract-based share of the plant’s power output.” In 2008, VY generated 4.9 billion kWh; 55 percent of the generation is 2.7 bkWh.

The NEPOOL mix comprises of six states that are in ISO New England (CT, ME, MA, NH, RI, VT). These states also comprise of the NERC region called Northeast Power Coordinating Council New England. According to EPA’s 2005 CO2 emissions data (latest available), the NPCCNE has an annual CO2 emission rate of 928 pounds/MWh.

If we multiply 2.7 bkWh times 928 pounds/MWh and convert to metric tons (divide by 2,205 pounds), we find that the CO2 emissions increase for Vermont would be 1.1 million metric tons per year. The metric tons of CO2 released per passenger car according to EPA is 5.19 per year - 1.1 million metric tons divided by 5.19 metric tons equals 218,000 passenger cars.

If you’re not yet tired of reading these calculations, just remember that if you use these for CO2, some in this post are in metric tons and some are in short tons. We at NEI use metric tons for CO2 because EIA and EPA use it as well. RGGI doesn’t, however, so keep that in mind just in case a nuclear critic gets real picky.

Hope you find this useful!

Comments

Jack Gamble said…
Thanks for the plug David. Hopefully we'll live up to your expectations.

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…

Innovation Fuels the Nuclear Legacy: Southern Nuclear Employees Share Their Stories

Blake Bolt and Sharimar Colon are excited about nuclear energy. Each works at Southern Nuclear Co. and sees firsthand how their ingenuity powers the nation’s largest supply of clean energy. For Powered by Our People, they shared their stories of advocacy, innovation in the workplace and efforts to promote efficiency. Their passion for nuclear energy casts a bright future for the industry.

Blake Bolt has worked in the nuclear industry for six years and is currently the work week manager at Hatch Nuclear Plant in Georgia. He takes pride in an industry he might one day pass on to his children.

What is your job and why do you enjoy doing it?
As a Work Week Manager at Plant Hatch, my primary responsibility is to ensure nuclear safety and manage the risk associated with work by planning, scheduling, preparing and executing work to maximize the availability and reliability of station equipment and systems. I love my job because it enables me to work directly with every department on the plant…