Skip to main content

Vermont Yankee Nuggets and Blogroll Update

It’s been awhile since we added anybody to our blogroll. Today we have the pleasure of adding Nuclear Fissionary who Idaho Samizdat introduced several weeks back. Jack Gamble, main contributor at Nuclear Fissionary, has done an informative job of refreshing our memories on costs, capacity factors, Chernobyl and so on.

As well as Jack’s good work, this week has been a great week for pro-nuclear bloggers out there. As many who read here know, the debate about the Vermont Yankee nuclear plant is raging on. Atomic Insights knocked out some very useful information about how much total tritium leaked at VY as well as exposed the misinformation from Vermont Senate Pro Tem Peter Shumlin on Vermont Yankee.

Apparently many people in the Vermont state legislature believe solar provides 30 percent of Germany’s electricity; an achievement that gives hope for renewable advocates. Well, Rod and Meredith from Yes Vermont Yankee squashed that false info (solar provides less than one percent) as well as corrected the Pro Tem’s facts on cobalt from VY.

It’ll be interesting to see how this plays out. This error from the Pro Tem has made some press which hopefully will get state legislators thinking a bit more realistically about replacing VY if it’s shut down.

Besides trying to keep up with all the pro-nuclear bloggers’ great content, we’ve made a few calculations on our own about VY such as carbon dioxide implications if the plant shuts down.

VY’s Impact on the Regional Greenhouse Gas Initiative

For those who may not know, ten states in the Northeast (Vermont included) have come together to begin reducing CO2 emissions using cap and trade. By 2014, their goal is to have stabilized their emissions and by 2018, hope to have emissions 10% less than the 2009 emissions they budgeted for themselves.

When digging into this, the closure of Vermont Yankee, 620 MW, looks like will have little impact on Vermont with regards to meeting RGGI limits. What’s interesting, though, is that it looks like the state of Vermont planned ahead that VY could be closed and budgeted enough allowances that a gas plant plus a small amount of renewables will be able to meet the lost supply. What’s even more interesting, is that the percent difference between what was emitted over the past three years versus budgeted is the greatest for Vermont (highlighted below). The following table contains data from the RGGI website showing the ten state’s three-year average of CO2 emissions (2006-2008) as well as their final budgeted allowances.

CO2 Data for RGGI States (short tons)

image

Since Vermont only buys 55% of VY’s generation, the state needs to find about 2.7 million MWh per year for replacement power (see calculations below). If a gas plant replaces this power, then it is estimated to emit about 1.3 million short tons per year (almost half a short ton of CO2 is emitted per MWh generated by gas).

To meet RGGI targets by 2018, which is to reduce CO2 emissions by 10% from the 2009 budget (pdf), Vermont will have 1.1 million short tons for allowances by 2018. Thus, conveniently, a gas plant and a little bit of renewables should allow Vermont to satisfy its RGGI requirements. It’s almost like the people involved in the RGGI deal-making for Vermont knew that VY can’t be replaced without fossil-fuels, a fact that all of us in the nuclear community are well aware of.

<Aside> Interestingly enough, the ten states set up the allowance program such that they’re actually allowing themselves to be able to increase emissions by a total of 4 percent by 2018 compared to the average they’ve emitted over the past three years (see table above). Though, since 2000, the ten states have reduced CO2 emissions by 18 percent due to more gas and nuclear instead of coal and oil in New York.</Aside>

CO2 Emissions Increase

A few more nuggets: assuming Vermont receives its replacement power for Vermont Yankee from its US NERC electric region mix, the estimated increase in CO2 emissions for the state would be about 1.1 million metric tons per year, equivalent to adding about 218,000 passenger cars to the road. And that’s for replacing only 55 percent of the plant’s electricity, see below.

Calculations

According to Vermont’s 2005 electric plan (p. 4-6, pdf), Vermont utilities “have a 55% contract-based share of the plant’s power output.” In 2008, VY generated 4.9 billion kWh; 55 percent of the generation is 2.7 bkWh.

The NEPOOL mix comprises of six states that are in ISO New England (CT, ME, MA, NH, RI, VT). These states also comprise of the NERC region called Northeast Power Coordinating Council New England. According to EPA’s 2005 CO2 emissions data (latest available), the NPCCNE has an annual CO2 emission rate of 928 pounds/MWh.

If we multiply 2.7 bkWh times 928 pounds/MWh and convert to metric tons (divide by 2,205 pounds), we find that the CO2 emissions increase for Vermont would be 1.1 million metric tons per year. The metric tons of CO2 released per passenger car according to EPA is 5.19 per year - 1.1 million metric tons divided by 5.19 metric tons equals 218,000 passenger cars.

If you’re not yet tired of reading these calculations, just remember that if you use these for CO2, some in this post are in metric tons and some are in short tons. We at NEI use metric tons for CO2 because EIA and EPA use it as well. RGGI doesn’t, however, so keep that in mind just in case a nuclear critic gets real picky.

Hope you find this useful!

Comments

Jack Gamble said…
Thanks for the plug David. Hopefully we'll live up to your expectations.

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …