Skip to main content

What Happens at 150 Million Degrees

One of the more exciting developments in the nuclear realm over the last couple of years have been been small reactors, those that generate less than 350 megawatts of electricity. While enthusiasm sometimes translates into a business model and sometimes does not, both the Department of Energy and the Nuclear Regulatory Commission have sponsored workshops and meetings specifically about them and several bills have been floated in Congress to support their development.
There have been a lot of reasons bruited for the interest in small reactors;  two are that they are less expensive than a full scale reactor while providing the same clean air benefits and most of the proposed designs can be built in a factory and sent fully constructed to a site. Oh, and a third reason: the site can serve a locality that would not necessarily benefit from a full-size reactor or even might want to use them off the main electricity grid (think army bases). So all that favors continued interest.
But business is business and small reactor makers have to make deals and show they are serious and make sure we know about it.
Power generation company Babcock & Wilcox Co. said Tuesday it plans to open a testing facility for its new class of mini nuclear reactors at the new Center for Advanced Engineering and Research Center in Bedford County.
“Mini nuclear reactors” sound like flux capacitors to us – they’re small, yes, but not pee-wee.
Bedford County is in Virginia and the testing facility will bring in some needed jobs. I found this detail a bit amusing:
The Virginia Tobacco Commission, which promotes economic growth and development in tobacco-dependent communities, approved a $2.4 million grant for the project.
Well, better a grant for this purpose than for tobacco, yes? In fact, the description tells the tale. The commission moves former tobacco-growing counties to new areas of interest – including small reactor testing. A net good, I’d say.
You can read more about mPower here.
Well, it will produce energy, but we won't use this energy and make electricity out of it. The energy that we produce will be released into the atmosphere. We won't be using this energy in any commercial way. It's supposed to produce 10 times as much energy as we put into the plasma. That would be about 500 megawatts. That's quite a bit. About enough to feed a medium-sized city.
Indeed. Speaking is Norbert Holtkamp, ITER’s principal deputy director general, and what he’s talking about is thermonuclear energy and the application of plasma physics to electricity-generating nuclear fusion plants.
Whenever I think nuclear fusion, I think hobby, because it’s something you can do at home – if you assemble the pieces and don’t mind watching your electricity meter spin like a top when you flip the switch on your reactor. It takes a lot of energy to generate a little energy through fusion. Well, it does in your tabletop reactor, anyway.
But the ITER project takes a different approach – I think. Read this description by Holtkamp on how it works:
The ITER is a tokamak, and a tokamak is a magnetic confinement device. What that means is big magnetic coils with very strong magnetic fields enclosing plasma. Through the plasma in the tokamak, one has to drive a very high current to heat up the plasma to 150 million degrees Celsius, which is about ten times the temperature of the sun's core. At this temperature the nuclei start to fuse. That's why it's called a fusion reactor. In the fusion process, energy is released (which we can use) later on to produce electricity.
It’s not the “very high current” that arouses curiosity – that’s well understood in the fusion community – it’s stabilizing the plasma once you get there.
Holtkamp doesn’t directly answer that question.
Frankly, I fully expected this statement:
ITER is the first fusion reactor that will produce much more energy than it uses.
to be directly followed with this one:
That still is a step that needs to be proven and there are scientific and technical questions that need to be answered and will be answered through the construction and operation of ITER.
Fusion does not need to be proven only proven practical. Thus has it always been.
Funning aside, ITER is fascinating and full of all kinds of potential – regardless of whether that step is ever proven – and if proven and made practical, would be a tremendous breakthrough in energy generation. I must confess a weakness for big dreams that seem all kinds of impractical – they always seem the firmest basis for human progress.
See here for more – a lot to explore at the ITER site.
A cutaway view of the ITER tokamak. See here for a better cutaway and a description of parts of the tokamak.


Anonymous said…
Small reactors cannot be economical at this point. Today's large reactor designs have trouble competing with traditional power sources because of capital costs. Unfortunately, when you halve or quarter the power output of a large reactor, you don't halve or quarter the capital cost. In fact, the cost is reduced by a smaller factor.

You may argue that their modularity or simplicity may reduce capital costs further, but I would argue that if that simpler/modular technology existed today in a proven usable form, it would be in place in larger reactor designs. Furthermore, you may be able to assemble the reactor pressure vessel and ship that in one piece, but that's such a small (physically speaking) component of a power plant. Everything else is construction on-site.
Anonymous said…
I would not give up on the possibility of modularizing other components of the plant. NSSS components like steam generators, for example. On the balance of plant side, arrays of turbo generators could be mostly fabricated offsite and then moved to the site for completion and integration. The site-specific plant structures (containment, auxiliary building, cooling tower) would still have to be on-site construction.
Inertial fusion is ahead said…
The statement, "ITER is the first fusion reactor that will produce much more energy than it uses," is wrong. The National Ignition Facility at Lawrence Livermore National Laboratory is likely to achieve this goal within the next year, at the same time that ITER is still just a large hole in the ground.

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…

Innovation Fuels the Nuclear Legacy: Southern Nuclear Employees Share Their Stories

Blake Bolt and Sharimar Colon are excited about nuclear energy. Each works at Southern Nuclear Co. and sees firsthand how their ingenuity powers the nation’s largest supply of clean energy. For Powered by Our People, they shared their stories of advocacy, innovation in the workplace and efforts to promote efficiency. Their passion for nuclear energy casts a bright future for the industry.

Blake Bolt has worked in the nuclear industry for six years and is currently the work week manager at Hatch Nuclear Plant in Georgia. He takes pride in an industry he might one day pass on to his children.

What is your job and why do you enjoy doing it?
As a Work Week Manager at Plant Hatch, my primary responsibility is to ensure nuclear safety and manage the risk associated with work by planning, scheduling, preparing and executing work to maximize the availability and reliability of station equipment and systems. I love my job because it enables me to work directly with every department on the plant…