Skip to main content

Protesting Nuclear Fusion On the Basis of Nothing

We sometimes bring up nuclear fusion as an object of fun, because activists say that fusion will scale successfully and become commercially viable in 10 years or so – and have been saying so for at least  20 years. That’s one joke. Another one is that it takes a city to power a town with fusion energy because it requires a lot of electricity to produce a little energy.

None of this is (completely) fair, of course, and there are several projects exploring the use of fusion. The most significant of these is the International Thermonuclear Experimental Reactor (ITER).

ITER is a large-scale scientific experiment that aims to demonstrate that it is possible to produce commercial energy from fusion.

This undertaking requires a full-scale reactor – in fact, a full-scale facility. ITER is located in France and financed by the European Union, China, Russia, South Korea, Japan, India and the United States – the big boys and girls of the nuclear world. (The EU is shouldering about 50 percent of the 13 billion euro project.)

Naturally enough, there are protests:

[M]any feel that the money and research would be better spent on renewable sources and addressing immediate problems instead.

The protester class in France is unusually full of know-nothings.

[M]any in France oppose the EU’s enormous financial investment in the project, in addition to the unknown environmental risks that it could pose. For instance, Sortir du Nucléaire [roughly, Get Out of Nuclear] opposes the project because the expensive, experimental reactor may never actually be able to produce energy commercially, there are unknown risks associated with fusion reactors, which still produce radioactive waste.

I’m surprised if anyone in this crowd really cares about the commercial prospects of the facility. These folks do make you wonder how France got to a Fifth Republic. It all feels knee-jerk – you say nuclear, we say “unknown risk.”

“While entertaining the myth of an ever-abundant energy source in a few decades, ITER is diverting attention from real solutions to energy problems like renewable resources and energy conservation,” said Charlotte Mijeon, of Sortir du Nucléaire.

No, ITER isn’t diverting anything – it has nothing whatever to do with renewable resources. Mijeon may mean that ITER is diverting money better spent on other things, but anyone can say that about anything that costs money. Europe seems pretty enthusiastic about renewable energy sources and ITER doesn’t seem to be impeding their uptake.

What struck me about these protests and how they differ from their American counterparts is that the French are standing against the potential for real scientific progress. Everything that leads to ITER’s goal is potentially productive in itself – a benefit of a large experiment – and if ITER does fulfill its goals, forget about it. The implications are immense. There’s a reason all these countries are partners.

And besides, even some of the fusion people can be seen as allies to the misbegotten.

The real effects, however, will be long-term solutions to energy shortages, he [Aris Apollonatos of Fusion for Energy]said. ITER participants are hoping that the research will be invaluable for the future when carbon and petroleum become scarce. Renewable energy sources like wind and water may not be enough, but nuclear energy as it is currently creates too much pollution and risk. With fusion, that could change. “Fusion, and by consequence ITER, is part of the long-term sustainable energy mix given the fact that it does not emit any carbon dioxide,” Apollonatos said.

Very much a “Can’t we all be friends?” moment that might seem a little cagey.

To be honest, I’m not sure how diligently to argue for fusion energy, the perpetual fifth wheel on the energy cart. But fair is fair – many bright minds have turned their luminosity onto fusion and some of the brightest are at ITER. I can see how this is how money should be spent and resources should be deployed – on projects that have the most potential to do the most good for the most people.

Comments

Ernest said…
Fund R&D for projects that have the most potential to do the most good for the most people. Sure, that's a fine criterion. But the winner of that sweepstakes isn't fusion.

The best of the Generation IV nuclear fission technologies generate waste on par with fusion with risk on par with fusion, or better. Moreover, Gen IV nuclear fission technologies are far simpler, easier, and less costly. They usually have been tested in operating pilot reactors already. And they are so efficient that the long term fuel supply is not a concern.

I submit to you: anything fusion can promise, Gen IV fission can do better.
jimwg said…
Ernest, you're right on! The only lamentable thing is that the public knows SQUAT about advanced nuclear fission technologies to support such -- thanks a largely biased renewables-worshipping mass media all over. The task and battle will be for individual nuclear plants to confederate on the PR front and AGGRESSIVELY take up the public education torch on this -- independent their fossil fuel owners to get the Gen IV word out! But on the topic of this feature, hey! Thermonuclear Fusion research shed the "nuclear" in its moniker long ago so it wouldn't get stained in the same bad PR breath as DANGEROUS fission NUCLEAR plants, so it's rather nice to see that nuke-indiscriminate public ignorance reality finally caught up with them. It's one thing for fusion to promote itself as an evolutionary outgrowth from fission, but another to strut yourself as fission's RIVAL and nary give any support or good words about the safety and record of today's current crop of nuclear plants. I want to wish fusion research well, but the way they divorced current fission like a leper instead of a cousin on the anti-FUD nuclear public perception front long left me cold.

James Greenidge
Queens NY
SteveK9 said…
For an American to make fun of the French anti-nukes is throwing stones in a glass house.
Anonymous said…
James,

You are quite right. R & D on the liquid fluoride thorium reactor (LFTR) and the integral fast reactor (IFR) was prematurely terminated. The prospects looked good, especially for the LFTR.

The public cannot be blamed for its ignorance. Their has been no widespread attempt to educate the public and both the LFTR and IFR have been ignored by the media.

Whether R & D on fusion should continue I cannot say, but surely there should be R & D on the LFTR and the IFR.
jimwg said…
March 30, 2013 at 10:10 AM
Re: "Anonymous SteveK9 said...
For an American to make fun of the French anti-nukes is throwing stones in a glass house."

Who's "poking fun"? This is serious business! Besides I don't discriminate anti-nukers, no matter their stripe. They're all the same irresponsible hypocritical zealots to me!

James Greenidge
Queens NY

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …