On the one hand, people jabber about energy diversity – simply, the practice of not betting the megawatts on one energy source – but if the price is right, there is a rush for, say, natural gas. Now, that’s still within the context, in this country, of a pretty broad energy mix. And natural gas isn’t exactly a villain, as utilities have embraced it as a means of reducing carbon emissions and shuttering coal plants.
But what about France? It gets between 75 and 80 percent of its electricity from nuclear energy. That’s not very diverse, though it doesn’t seem to have caused a lot of problems. Yet.
I ran into this little story at Autoblog Green, about Renault’s warning that the grid may not be able to handle a big influx of electric cars:
The culprit is a combination of France's extensive use of nuclear power, which lacks the flexibility to cope with power-demand surges, and the widespread use of electric heaters during France's cold spells, which already strains the country's power supply.
I seem to recall that France encouraged electrically generated heat as a means to soak up excess electricity. It may be that France just needs to make more electricity if it now needs to accommodate cars. But the story, while not dishonest, seems to want to have nuclear energy as the problem rather than the grid. Since this was picked up out of the Reuters news service, it seemed a good idea to look there for more details.
And voila! The grid does seem to be struggling:
France's power grid, already under strain at peak periods, could struggle to cope if growing numbers of electric car owners all recharge their batteries when they sit down for dinner, power sector executives say.
But, um, Zut alors! Nuclear energy is not completely off the hook:
The heavy reliance on electrical heating in France was instigated by successive governments to absorb surplus nuclear power. Its 19 nuclear power plants make France Europe's biggest electricity exporter and ensure generally steady power supplies.
However, it lacks flexible capacity - usually generated by gas, coal or oil-fired plants - to meet peak evening demand during cold snaps.
So I was right about electric heating, but its use appears to have led the country inadvertently into a kind of cul-de-sac. Would coal or natural gas (let’s let oil slip away) help? Sure – because both can ramp up and down relatively quickly and relieve peak demand – if the grid can absorb more electricity and transmit it where its needed. (France has not done much with a “smart” grid yet that has more routing flexibility.)
Logically, trying to add more nuclear energy will produce more excess electricity when cars are not being charged – presumed to be at night – which may cause the government to encourage – what? – more exports? More electric cars?
A lot of this, according the article, is speculative on the part of Renault, which provides time to cook up ideas to deal with it.
Electric cars' batteries could smooth the variability of wind and solar energy by storing wind power produced at night and injecting it back to the grid when it needs help, he [RTE's Oliveier Grabette] said. Such vehicle-to-grid systems are already being tested in the United States and Japan.
RTE is Reseau de Transport d’Electricite, essentially the manager of the grid. Reseau means grid or network.
In any event, one could reasonably argue that lack of energy diversity might catch up with the French. The decision to go all-in on nuclear energy has allowed the country to have the lowest cost electricity in Europe, to act as a net exporter, and to be exceedingly well-positioned as the issue of carbon emissions rose to the fore. France chose energy security (access to uranium, a recycling regime) over energy diversity to suit its own national interests.
But the lack of diversity also – along with a wobbly grid – might be finding its limit – and ironically, with electric cars, which we’ve found a natural match for nuclear energy. It still might be in France and certainly is here. That said, some renewable energy or natural gas where they can be most effective wouldn’t go amiss.
For more on the subject of energy diversity, you may find this Congressional testimony by William Mohl, the president of Entergy Wholesale Commodities, interesting.
Comments
Since peak load power plants usually operate at very low annual load factors ranging from 5 percent to 15 percent, the significantly higher cost of electricity generated from nuclear synfuels could be substantially mitigated by the dominance of cheap base load nuclear electricity.
Marcel F. Williams
Other methods include using electric blankets instead of heating entire dwellings or rooms, using dehumidifiers to recover sensible heat from air and make it feel warmer due to lower moisture, etc.
The ideal duty cycle for electric vehicle batteries is to charge late at night every 24 hours, and be available for driving the next day. The suggestion that EV batteries are a suitable storage sink for weather-dependent electricity sources like wind, where the duty cycle can involve days of calm weather followed by a few days of high winds, is really stupid.
By the second or third day of calm weather, the car will not work. Conversely, it will have a full charge every morning if the grid has nuclear.