Skip to main content

Idaho National Labs: Taking Nuclear Energy into the Digital Age

The following blog post was submitted by Idaho National Laboratory’s Caleb Robison for NEI’s Powered by Our People promotion. Powered by Our People is part of NEI’s campaign called Future of Energy, which NEI launched earlier this year. This promotion aims to communicate innovation in our nation’s nuclear facilities—in the voices of their workforces.

Caleb Robison is an experiment system engineer who has worked at the Department of Energy's Idaho National Laboratory for the past nine years. He also mentors the next generation of nuclear professionals by participating in INL’s internship program.

We can’t wait to highlight your facility’s innovators and their part in the #futureofenergy across our digital channels from July to September. Take a look at the featured content on our website.


Caleb Robison of the Idaho National Laboratory
Caleb Robison works at the lab's Advanced Test Reactor (ATR), where he prepares safety documentation for new experiments, coordinates experiment schedules with reactor operations cycles and provides system engineer support for a hydraulically-operated experiment system that can be loaded while the reactor is operating.

The job provides constant challenges and allows him to think outside the box to find solutions. Working with a research tool as versatile and powerful as the ATR, he says, is exciting. He’s excited to be part of helping develop new technology that takes nuclear to the next level. In short, he feels like he's contributing to "moving nuclear energy technology from the '70s to the digital age." 

"One of the reasons America is so powerful is that we have the energy to fuel our economy," Caleb says. "To continue this into the future we need cheap, reliable, diverse and environmentally responsible energy sources. No one source provides all the solutions to all of the country’s energy needs. I believe that any national energy portfolio that doesn’t include nuclear is unsustainable and will eventually fail."

The one-of-a-kind research conducted at ATR and the collaborative atmosphere created by its DOE National Scientific User Facility provides significant potential success for the nuclear industry worldwide. ATR research also helps extend the life of current reactors and better understand reactor aging phenomena. Caleb relishes being part of that contribution.

"I’m bringing innovation to the nuclear industry by supporting research and development of new materials and fuels for use by the United States Navy and by helping other researchers — international industry, universities and reactor vendors — push the envelope on reactor performance while increasing safety." Caleb especially enjoys opportunities to contribute to nuclear advancement by participating in public outreach opportunities, such as tours and other public forums.

Comments

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …