Skip to main content

Radiation Visible

If you think about nuclear energy, you’re bound to run into a lot of anti-nuclear chatter. Most of it is exceptionally dumbbell in nature, uninformed and trying to gin up fear where there need be no fear. It’s the kind of thing that cable news thrives on – about everything, not just nuclear energy – so trolls of various kinds will always find work, as long as they are presentable.

But occasionally, you run into something that has at least some value – maybe not a lot but some.

Consider this:

One in three Americans lives within 50 miles of a nuclear power plant (MSNBC) that routinely releases radioactive poisons (EPA) into the environment, but there are no public health alerts when these invisible poisons are released into our air and water and the utility companies are only required to make annual reports on their averaged quarterly emissions.

Well, okay, that’s dumbbell writ large.

The page is devoted to the idea of adding a dye to radiation to make it visible and for you to sign a petition demanding it:

The three methods proposed to MAKE RADIATION VISIBLE, are highly achievable at a low relative cost. The safety factors for nuclear preparedness and public health and safety far outweigh the nominal costs: [CAPS theirs]

The caveat: if radiation could be dyed, it would be dyed. Visible radiation would be very handy, though the safety of nuclear energy plants is really the least of it. Locating radon – aiding all kinds of radiological medical procedures – helping industries that work with radioactive materials. If someone could make it work, it would represent a potential financial bonanza. If it hasn’t been done, you can be sure it’s because the nature of radiation does not make it plausible.

Indeed, that’s the case. Atoms being very tiny – and excited atoms (hence radioactive) not being conducive to anything attaching to them – any dye that could be applied would be so miniscule as to be invisible itself. And no dye could get close enough to an atom to adhere to it, even if it could be seen.

Never say never, of course, but this one’s a non-starter.

But -

It is an intriguing idea. And it is being looked into, sort of, under the guise of scintillating nanocompositors, which sounds like Robin Williams’ Mork from Ork on a tear. These live largely in the realm of theory, but hold real potential. Instead of coloring radiation, they cause areas where radiation is present to glow. It sounds rather spooky (or groovy, if you have a collection of black light posters), but for detecting the presence of radioactivity they could be a boon.

To read about scintillating nanocompositors is to run into a lot of this (from an abstract):

The use of light emitting nanoparticles in polymer and glass matrices was studied for the detection of radiation. These nanocomposite scintillators were produced by various approaches including quantum dot/polymer, fluoride nanophosphor/epoxy and halide nanophosphor containing glass-ceramic composites. The synthesis and characterization of these nanoparticles as well as their incorporation into composites is discussed. Further, the application of these composites for radiation detection and spectroscopy is described.

So, yeah, it’s at this stage. The government is looking at it too, primarily as an non-proliferation tool. This is from Los Alamos:

New scintillator materials are in high demand to assist in non-proliferation and counter-proliferation.

One application for these materials includes the protection of borders and ports from the introduction of nuclear materials. In order to create a new class of scintillator materials that combines good energy resolution, large size and low cost, we have developed a large-scale synthesis of narrowly size-distributed <10nm cerium-doped lanthanum halide nanoparticles, Ce:LaX3, where X = F or Br.

It goes on like that. This is from 2007, so doubtless the project is much further along now. (I did find more recent articles, so work continues, but these are good representatives.) The idea behind scintillating nanocompositors, if it can be made to work, could have exactly the applicability of dyed radiation – but better, because it can make all radiation visible, both to head off danger and to enhance life saving technologies. Nuclear energy plants are really the least of it.

Here’s the thing, though: anti-nuclear activists often assume that industry and government are so casual (or greedy or evil) about public safety that recklessly wiping out swaths of the population is as nothing to them. But there are loads of incentives, not to mention scientific curiosity, to make things safer – and better – and more effective. Dying radiation may not be a very good idea – it’s not very viable, in any case – but if you have to sign a petition, do it to encourage scintillating nanocompositors. That’s where the action is.

Much thanks to Jerry Hiatt, NEI’s senior project manager, radiation safety and environmental protection, who helped considerably with this post.

Comments

Anonymous said…
You might be interested in this.

http://www.h3dgamma.com/applications.html

Popular posts from this blog

Knowing What You’ve Got Before It’s Gone in Nuclear Energy

The following is a guest post from Matt Wald, senior director of policy analysis and strategic planning at NEI. Follow Matt on Twitter at @MattLWald.

Nuclear energy is by far the largest source of carbon prevention in the United States, but this is a rough time to be in the business of selling electricity due to cheap natural gas and a flood of subsidized renewable energy. Some nuclear plants have closed prematurely, and others likely will follow.
In recent weeks, Exelon and the Omaha Public Power District said that they might close the Clinton, Quad Cities and Fort Calhoun nuclear reactors. As Joni Mitchell’s famous song says, “Don’t it always seem to go that you don’t what you’ve got ‘til it’s gone.”
More than 100 energy and policy experts will gather in a U.S. Senate meeting room on May 19 to talk about how to improve the viability of existing nuclear plants. The event will be webcast, and a link will be available here.
Unlike other energy sources, nuclear power plants get no specia…

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…