Skip to main content

Going Nuclear in Washington City, Utah, Pop. 22,000

washington_cityWe’ve sometimes taken a look at nuclear energy support – nascent or realized – in several states. Communities have occasionally weighed in, as potential hosts for consolidated storage sites, for instance. The folks of Lea and Eddy Counties in Nevada have consistently voiced support for Yucca Mountain.

Washington City, with a population of about 22,000, has gone a little further.

During a meeting Wednesday night, the City Council approved an agreement with the “Carbon Free Power Project” that will provide funds toward identifying potential sites for a nuclear power plant.

On first glance, this is a bit puzzling, as the city would seem unlikely to set up and run a nuclear facility without state and industrial cooperation – at least, not by itself. Indeed, this is true.

NuScale Power has proposed to build a power plant housing 12 of the compact reactors and produce an estimated 600 megawatts of power. The plant is slated to be built in the area of Idaho Falls, Idaho. If the project comes to fruition, the plant will be built and operational by 2024.

“We’re looking at approximately 11 megawatts, or 11,000 kilowatts (for the city) from this facility once it’s up and running.” Washington City Manager Roger Carter said.

That’s much more plausible, but then, what site are they looking for?

The agreement Washington City Council unanimously approved Wednesday devotes funds to a two-phase study related to identifying viable sites for the power plant, and then conducting an in-depth study into the location’s overall feasibility.

“This is the first of probably numerous agreements we’ll see,” Carter said. The project will progress in phases, with participating cities being given the option to sign or step back from the project if they no longer wish to pursue the project.

The story doesn’t quite explain this, but I think the idea is that the towns that sign on to the Carbon Free Power Project (CFPP) all do this. The latter is a project of Utah Associated Municipal Power Systems (UAMPS), which describes itself as “a political subdivision of the State of Utah that provides comprehensive wholesale electric-energy, on a nonprofit basis, to community-owned power systems throughout the Intermountain West.” And it’s pretty specific about which carbon free power projects it has in mind:

The purpose and need of the CFPP is to provide for additional mid-sized baseload electrical generating capacity to meet the expected future needs of UAMPS' members. UAMPS has determined that new carbon free baseload capacity is necessary to replace the expected retirement of coal fired generating assets and that the UAMPS members need to have a carbon-free baseload generating asset as part of a balanced portfolio of generating assets. UAMPS SmartEnergy analysis concluded that small modular nuclear reactor technology is an important option for future consideration.

UAMPS has further determined that the proposed action will allow it to be responsive to EPA's Clean Power Plant Rule, which requires the reduction of carbon dioxide emissions from coal fired power plants while recognizing the development of new nuclear generation as playing a vital role in reducing carbon dioxide emissions in the electric industry.

That ties it all together – and I imagine more cities through the UAMPS area will sign on as well. And why?

“Our concern of course is making sure that we have an adequate baseload come 2024, and power, especially with our growth,” [Washington City Manager Roger]Carter said. “What we’re finding is a lot of the baseload we’ve relied on in years past is fast disappearing.”

Indeed – the key words there are “adequate baseload.” And that nuclear energy can supply that.

Comments

Anonymous said…
I think you mean Lea and Eddy Counties New Mexico, not Nevada and WIPP not Yucca Mountain.

Popular posts from this blog

A Billion Miles Under Nuclear Energy (Updated)

And the winner is…Cassini-Huygens, in triple overtime.

The spaceship conceived in 1982 and launched fifteen years later, will crash into Saturn on September 15, after a mission of 19 years and 355 days, powered by the audacity and technical prowess of scientists and engineers from 17 different countries, and 72 pounds of plutonium.

The mission was so successful that it was extended three times; it was intended to last only until 2008.

Since April, the ship has been continuing to orbit Saturn, swinging through the 1,500-mile gap between the planet and its rings, an area not previously explored. This is a good maneuver for a spaceship nearing the end of its mission, since colliding with a rock could end things early.

Cassini will dive a little deeper and plunge toward Saturn’s surface, where it will transmit data until it burns up in the planet’s atmosphere. The radio signal will arrive here early Friday morning, Eastern time. A NASA video explains.

In the years since Cassini has launc…

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…