Skip to main content

Nuclear Industry Skeptic Turns into Believer

My name is Jennifer Correa, and I am a mechanical engineer with Structural Integrity Associates. I have been in the nuclear industry for about 13 years. At Structural Integrity, I co-manage the Fatigue Management Product, which deals with the fatigue of metal components due to changes in pressure and temperature in nuclear power plants. If the conditions that lead to metal fatigue are managed well, the components can operate safely for many years, well beyond the original licensing period.
Jennifer Correa
Jennifer Correa
Before I came to Structural Integrity, I didn’t know much about nuclear power. I understood it at a basic level, but only so far as the introduction that I received as part of my general mechanical engineering coursework. It was kind of mysterious and I had a vague idea that it was dangerous and risky. I’m a Californian and the opposition to nuclear power is strong in parts of this state. When I came to work for Structural Integrity, I was skeptical of nuclear power. Yet, over time, as I learned more about the design and operation of the plants, and about the regulatory environment in which the plants operate, I became convinced that nuclear power is an important part of our power mix and that we don’t take undue risks by having nuclear plants in our country.

My favorite part of my job is working with our clients to solve aging management issues. We help them determine the best course for their plant’s needs and then use our tools to meet those needs. This includes help with License Renewal Application preparation, ASME Section III fatigue analyses, Environmentally-Assisted Fatigue analysis, and so on. One of the tools of which I am especially proud is a cycle and fatigue management software called SI:FatiguePro 4.0, which we developed here at Structural Integrity (originally under EPRI sponsorship in the 1980s). Our software can be customized to the needs of each plant and is used to help manage fatigue by tracking plant transients and fatigue usage in critical components over time. With this software, plant engineers can monitor metal fatigue at their plants to ensure that cycle and fatigue limits are not exceeded. If any limits are projected to be exceeded, then the software gives them an early warning so that they can make plans to correct the issue before it becomes a problem.  

I think that the public would be more accepting of nuclear power if people understood the basics of how nuclear plants work. Most people would be surprised to learn that the amount of nuclear fuel used to operate nuclear plants is very small and that this fuel is used only as a heat source to turn water into steam, just like any other electrical generating plant that uses steam to run its turbines. The hyperbolic cooling towers, which have come to symbolize the nuclear power industry, are just cooling towers for secondary-side (non-radioactive) water – these types of towers are widely used in applications where large volumes of hot water must be cooled quickly, not just for generating nuclear power. The steam that we see coming out the top and the water being recirculated back into lakes, rivers, and oceans is closely monitored to ensure levels of radioactivity are well below federal limits. The water that runs through the reactors themselves, which does contain radioactive particles, is isolated from the water released back into the environment.  

Nuclear power generation is the only currently available method of generating large amounts of electricity, 24 hours a day, without producing any carbon emissions. Also, nuclear reactors do not emit any of the six air pollutants identified in the Clean Air Act: ozone, particulate matter, carbon monoxide, nitrogen oxide, sulfur dioxide or lead. In our current environment, we are focused on reducing carbon emissions, and this makes nuclear energy an extremely important part of the power generation mix for fighting pollution.  

The above post by Structural Integrity Associates is a part of NEI’s Powered by Our People promotion which showcases the innovators within the nation’s nuclear energy workforce.

For more on this promotion, follow the #futureofenergy tag across our digital channels. 

Comments

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…