Skip to main content

I Want a Nuclear Powered iPhone

Michael Purdie
The following is a guest post by NEI's Michael Purdie. 

The Wall Street Journal's Jon Keegan recently published a very interesting infographic on how long your iPhone would keep operating depending on the ultimate power source. Keegan analyzed the energy density of certain fossil fuels, batteries, and even body fat (which was pretty cool) and analyzed how long an iPhone could run based on its theoretical battery volume.

Keegan looked at three scenarios: regular use, LTE browsing, and stand by time for an iPhone 6s. Under those conditions, Keegan estimated that the lithium ion battery in your iPhone should last 15 hours from regular use, 10 hours from LTE browsing, and 10 days on standby. The results ranged from an hour from a lead acid battery (similar to that of the one in your car) to 10 days by diesel fuel from regular use. In case you were curious, body fat would power your phone for 9 days.
Can't fight the power.

Interestingly, there was one fuel source that didn't make Keegan's cut: uranium. For those of you who are wondering, uranium oxide, the fuel that powers nuclear reactors, is so energy dense that its fission process could power your iPhone for almost 12,000,000 days of regular use! That’s over 32,000 years!

If for some reason you left your phone on standby mode, you would not need to charge your phone for 515,000 years.

I have many questions for Apple CEO Tim Cook. Would my warranty last that long? Would I be able to keep my original data plan? How is this possible?

Keegan analyzed electrical energy density in Watt hours per liter (Wh/l). This is the measurement of electrical energy per hour in a certain volume (in this case, a liter). In Keegan’s analysis, he calculated the densest fuel to be diesel fuel at 10,700 (Wh/l). The uranium fuel in nuclear reactors has 13.2 billion Wh/l.

This is simply the energy released when nuclear fuel is in an operating reactor.  Less than five percent of nuclear fuel is from the Uranium-235 isotope.  Also, not all of the U-235 isotopes fission.  If we assumed that the battery was powered by U-235 and had 100% fission, we’d be talking about trillions of WH/l. If you'd like to check my work, click here.

The larger point is that when it comes to energy density, nuclear energy is the superior technology. Here's another real world example. A typical 1,000-megawatt reactor can be sited on a 1.3 square mile parcel of land, a size roughly equivalent to New York's Central Park. This includes all of the plant's operations, including security and onsite storage of used nuclear fuel.

To generate the same amount of electricity, a solar facility would require 45-75 square miles, between 1.3 and two times the size of Manhattan. A wind farm able to generate as much electricity would be larger still, between 260-360 square miles, or between 7 and 11 times the size of Manhattan.

The ability of nuclear energy to deliver so much carbon-free electricity in such a small package makes it so valuable to our energy future.

EDITOR'S NOTE: After taking a second look at our calculations, we discovered that we had underestimated the potency of uranium by a factor of 1,000. Thanks to The Nuclear Advocate on Facebook for pointing out the error.

Comments

jim said…

Good article!

This is sheer ancient history but my folks bought the World Book Encyclopedia around 1962-63, and the atomic energy section featured this shirt-button sized atomic battery, which I think I recall was composed of a sandwich of electrodes and maybe uranium or plutonium, whatever, it was shown handled in bare hands and I think it was intended for Accutron watches and pacemakers for the 1964 Worlds Fair. Can't Google it to save my life now!

James Greenidge
Queens NY
Adam Gott said…
I understand the point of your post but you would have to add an extra ~1 kg of mass to your iPhone and that would also be discounting the weight of your moderator.
Anonymous said…
@Adam Gott. Lol. Agreed. People as it is complain when phone's battery temperature rises during heavy use. Imgaine how much heat would be generated using uranium?
Anonymous said…
The weight of only the uranium would be inconsequential...

10.97 g/cu_cm (mass density UO2) * 9322cu_mm (Battery Volume) = 0.225 lb = 3.6 oz

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …