Skip to main content

The Third Way Summit and Advanced Nuclear Reactors

Say “nuclear reactor” and what leaps to mind is a giant machine, powerful enough to run an entire city, with thousands of moving parts.

But UPower Technologies has a different concept: a nuclear power plant that is mostly built in a factory, and arrives on site in two standard shipping containers. After set-up, it runs a cluster of buildings or a village. The reactor is more like a nuclear battery, with no moving parts.

UPower is one of several new reactor concepts that will be the topic of discussion in the next few days. Third Way, a centrist think tank, holds an Advanced Nuclear Summit and Showcase on Wednesday. Third Way recently issued a report on the future of nuclear power, in partnership with three Department of Energy laboratories: Idaho, Argonne and Oak Ridge. In November, the White House held a summit on nuclear energy.

Behind the events is the conviction that with technological progress, nuclear power, like microchips or composite materials or a lot of other evolving technologies, can turn up in new applications, in new places.

Take UPower. Today, almost all reactors sit on the power grid, where they contribute to a system with many different sources, but off the grid, the big source of energy is diesel generators.

These have a variety of drawbacks. Often the fuel has to be hauled long distances, so getting diesel fuel requires burning diesel fuel. Sometimes the fuel comes over routes that are open only seasonally. A reactor like UPower’s could run for ten years without refueling. Like a diesel generator, UPower’s reactor has an output is in the range of megawatts. (For reference, a gasoline-powered generator you buy at a hardware store is usually in the kilowatt range, and a house with a central air conditioner will draw several kilowatts; a megawatt is about as much power as it takes to run a Super Walmart. A typical reactor today is in the range of 1,000 megawatts.)

Diesel is by far the most expensive fuel, and can be the most polluting. And often, people who rely on a diesel generator are paying five or ten times as much, per kilowatt-hour, as customers on a major grid. So the economics of a tiny reactor might not work on a major grid, but would be very attractive in places that are off grid. According to the International Energy Agency’s World Energy Outlook, 1.2 billion people have no access to electricity and another 2.7 billion rely on “traditional biomass,” everything from wood to dung, burned indoors in poorly-ventilated spaces.

Upower is not alone in this idea; Toshiba’s 4S design (Super Safe, Small and Simple) has already attracted interest in Alaska and elsewhere. But Toshiba, Upower and others face obstacles in coming to market, one of which is the high cost of licensing a new reactor design. City officials of Galena, Alaska, wanted a Toshiba reactor as an alternative to shipping in diesel fuel in the brief window when barges can get to the town, but the Nuclear Regulatory Commission told them that the town and the company would have to pay the NRC’s costs for licensing the plant. But around the world, such reactors have tremendous environmental promise, for cleaning up indoor air, reducing deforestation caused by burning wood, and reducing air pollution from dirty diesels.

By Third Way’s accounting, 48 companies, with more than $1.6 billion in private capital, are pursuing advanced reactor technologies.

The new Lightbridge fuel design
Some are fission, some are fusion. One, Lightbridge, is not pursuing a new reactor, but rather, a new fuel form that can go into existing reactors. Existing fuel uses uranium in ceramic pellets, stacked in long metal tubes called fuel rods. Lightbridge uses uranium embedded in metal, shaped like a liquorish stick. The design as 35 percent more surface area, so it gives off its heat more easily. The Lightbridge fuel is intended to run at less than 700 degrees F, and give off about 10 percent more heat than a conventional fuel rod, which heats to over 2,000 degrees. That creates the opportunity to get more electricity out of current reactors, with fuel that is even less likely to overheat.

All these technologies face years of development work, but Lightbridge recently won permission to try out its fuel in a test reactor in Norway.

Also marching ahead is NuScale, which has a design for clusters of small reactors, installed in a sealed capsule in a large pool of water. The cores are so small, relative to their surface area and the cooling ability of the pools, that fuel damage becomes impossible. NuScale went the opposite route from Lightbridge; its design uses a type of fuel that has been used for decades, except half the size. The strategy reduces the number of new technologies that must be approved.
Aerial view of the NuScale Plant.
And there is also government help. On January 15, the Energy Department announced that it would provide funds to x-energy and a group that includes TerraPower and Southern Company to develop new reactor designs. X-energy is working on a high-temperature “pebble bed” design, and the TerraPower/Southern group is planning a molten chloride fast reactor. Pebble beds produce a higher-temperature steam with many uses, and fast reactors make better use of fuel, and their used fuel contains fewer long-lived materials.

There is more to come. Watch this space.


Anonymous said…
Overhaul of the NRC, anyone?
jimwg said…
NuScale & Upower : Any city/community orders yet?
Khawar Nehal said…
Great work by all.

Which 4G reactors are available now or closest to availability.

Also what are the LCOE for these reactors ?


Khawar Nehal

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.


The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.

What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why Nuclear Plant Closures Are a Crisis for Small Town USA

Nuclear plants occupy an unusual spot in the towns where they operate: integral but so much in the background that they may seem almost invisible. But when they close, it can be like the earth shifting underfoot., the Gannett newspaper that covers the Lower Hudson Valley in New York, took a look around at the experience of towns where reactors have closed, because the Indian Point reactors in Buchanan are scheduled to be shut down under an agreement with Gov. Mario Cuomo.

From sea to shining sea, it was dismal. It wasn’t just the plant employees who were hurt. The losses of hundreds of jobs, tens of millions of dollars in payrolls and millions in property taxes depressed whole towns and surrounding areas. For example:

Vernon, Vermont, home to Vermont Yankee for more than 40 years, had to cut its municipal budget in half. The town closed its police department and let the county take over; the youth sports teams lost their volunteer coaches, and Vernon Elementary School lost th…