Skip to main content

What Joe Romm Gets Wrong About James Hansen & Nuclear Energy

Matt Wald
The following is a guest post from Matt Wald, senior director of policy analysis and strategic planning at NEI. Follow Matt on Twitter at @MattLWald.

Joseph J. Romm, a former assistant secretary of energy for efficiency and renewables, and a senior fellow at the Center for American Progress, has recently gone after James Hansen, the climatologist who issued the clarion call warning about global warming way back in 1988. Romm says that Hansen puts too much emphasis on nuclear power as a tool to reduce the carbon-loading of our atmosphere.

For people worried about climate (including me) it's distressing to see the attack, because the two men agree on the fundamental point, that we need a vigorous global campaign to prevent an awful destabilization of the climate. It's a shame to see supporters of that idea falling out with each other when their key point is not yet a universally-held view.

But Romm has never liked nuclear power, and perhaps we should feel complimented that he acknowledges any productive role for the technology. He is praising us with faint damn.

Romm and others suffer from a “silver bullet syndrome.” They argue that nuclear plants take years to build, and that recently we've been adding them at a slow rate, so nuclear won't solve the problem; therefore it's time to move on to technologies that are growing faster, like solar panels and wind turbines, they argue.

There are two problems with the argument: it's wrong and it's counterproductive.

It's wrong because the scale is so different. Everybody feels warm and fuzzy about seeing a solar panel on a rooftop, but according to the Energy Department's most recent statistics, which run through the end of September 2015, nuclear power is roughly 29 times larger than solar in this country, at 606,709 million kwh for the first nine months of last year, vs. 20,982 for solar.

Nuclear is about 4.5 times bigger than wind, which generated 134,578 million kwh over the period (data from table 7.2a of the Monthly Energy Review.)

Solar and wind both have plenty of room to grow, but not unlimited room. Each tends to produce energy in a concentrated period (noon for solar and night for wind) and when they start flooding their markets, the price of energy will drop at those times, reducing the logic of building more. This is one reason that electric systems need a variety of generation types, to supply on the schedule that consumers need, which differs from the timetable of natural forces.

And while solar and especially wind are good at providing energy, they don’t provide consistent power – that is, the ability to do work when the work needs doing. That’s why a “net zero energy” building still needs something else to back it up.

We don't want a system that is all solar or all wind – or all nuclear, for that matter – any more than we want every vehicle on the road to be an 18-wheeler, or every calorie on our dinner plate to be from tofu.

And until all the fossil emissions have ceased, we'll need every zero-carbon source we can find. Arguing over precisely how much of the solution will come from nuclear vs. other sources is simply not sensible. Also, the designs in the lab today will help meet the mid-century goal on which scientists and policy-makers are now focused, but we will need to keep building zero-carbon sources for many decades beyond that, to meet growing global demand.

And Romm is correct that to take a big slice out of carbon emissions, especially as world demand for electricity rises, is going to require an unprecedented expansion of nuclear power. If we do it with wind and solar, or geothermal or wave energy or and any other carbon-free source that we can lay our hands on, those, too, will require heroic levels of increase. Any successful strategy that takes a big bite out of emissions is going to have to show unprecedented growth rates.

Romm is also correct that we aren't building a lot of new reactors in this country right now, despite concern about global warming. That's mostly because the price of natural gas, a competitor to uranium, has collapsed. Using natural gas to replace coal guarantees a modest reduction in carbon emissions. But it also guarantees that the reduction will be only modest, because per kilowatt-hour, burning natural gas emits roughly three times as much carbon dioxide as our 2050 goal allows. Wind and sun are heavily subsidized, with dollars (through wind's production tax credit and solar's investment tax credit) and through a non-dollar promotion called a renewable energy portfolio. Nuclear is a micro-carbon source, like wind and solar, but does not benefit from those state-imposed quotas.

Taming climate change, the central focus of Romm's and Hansen's work, is going to require a lot of hard work on a lot of different fronts. It would be foolish not to push hard on all of them.

Comments

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…