Skip to main content

An All-of-the-Above Nuclear Future

Russ Bell
The following is a guest post from Russ Bell, senior director of new plant licensing at NEI.

There was a positive vibe at this year’s NRC Regulatory Information Conference (RIC), which took place in Rockville, MD, on March 8-10. Held annually, “the RIC” is the largest conference of nuclear energy professionals in the world. RIC sessions cover numerous topics du jour, including justifiable pride by regulators and industry alike in the safety improvements made in the wake of the earthquake, tsunami, and nuclear emergency that occurred at Fukushima-Daiichi; anticipation of second license renewals that will further extend the useful life of our operating fleet of 100 reactors; and excitement about new, advanced design nuclear plants. The future was a recurring theme of the 2016 RIC.

While we can’t predict the future, there are a few things we can say for sure:
  1. The demand for electricity and the myriad benefits it brings will continue to grow.
  2. Demands will increase for our electricity be clean and carbon free, without compromising the reliability we’ve come to take for granted.
  3. Energy markets are not monolithic. There is no one-size-fits-all solution to the challenge companies face to provide clean, reliable and affordable electricity in the various regions communities they serve. 
Because we know just those few things about the decades ahead, we are working hard to enable an all-of-the-above nuclear future that includes a portfolio of technology options, including
  • Large LWRS
  • Light water SMRs
  • And non-LWR reactors
And the future of nuclear is here already.  

In Tennessee, Watts Bar 2 received its operating license last October and will soon become the first new nuclear plant to come on line in the US since 1996. Utilities in Georgia and South Carolina are busy building the first plants licensed under the NRC’s new plant licensing process, known as Part 52. These four Westinghouse AP1000 units are also the first NRC-certified designs that employ passive features to achieve enhanced levels of safety.

TVA CEO Bill Johnson celebrates receipt of Watts Bar 2 operating license. 
Nuclear technology traces a continuum of innovation, and the Next Big Thing just might be light water SMRs. Light water SMRs make innovative use of familiar technology and they are ready to be licensed and built. SMRs have smaller nuclear cores and simplified designs that significantly reduce potential accident scenarios and the risk of offsite radiological releases. For an owner, SMRs can be sited in more places and are suited to smaller grids. They cost less to build and will be easier to finance.


NuScale is farthest along among SMR vendors and plans to submit its design certification application to NRC by the end of this year. NuScale is working closely with Utah Associated Municipal Power Systems on plans to license and build the lead NuScale plant in Idaho in the early 2020s. TVA is also considering adding an SMR to its system and will apply to NRC for an Early Site Permit at the Clinch River site later this year.

NuScale Power Module
DOE is supporting NuScale and TVA as part of a public-private partnership known as the SMR Licensing and Technical Support Program. We plan to work with the Administration, Congress, and DOE to continue DOE’s support of SMRs after the current LTS program expires in 2017.

Beyond SMRs, advanced non-LWR reactors have great potential as a strategic energy technology to supplement the existing light water reactor technologies and provide reliable, clean carbon-free, affordable electricity generation. 

Advanced reactors can be large or small, or even very small, and can differ substantially from LWRs. In addition to simplified, passive safety systems, non-LWR reactors may have advanced fuel cycles that reduce waste. Some operate at near atmospheric pressure, which offers significant design and safety benefits. Most operate at very high temperatures, making them well suited to process heat applications such as hydrogen production and desalination.

Though some years away from commercial availability, advanced non-light water reactors are generating a lot of interest today among policymakers, environmentalists, venture capitalists, industry leaders and leaders outside our industry such as Bill Gates. DOE is supporting advanced reactors in a variety of ways, including research, development, testing and demonstration. And Congress is weighing in too. The House and Senate passed companion bills last month supporting the use of DOE’s unique testing and analysis facilities to accelerate development of advanced reactors, and additional legislation is under consideration.

Generating companies need a range of advanced reactor options – an all-of-the-above menu, so to speak – so they can choose the technology that best meets their needs.  

We are experiencing a convergence of experience and ingenuity that we want to leverage to make the design certification and licensing process more efficient in the future. We are feeding lessons learned from the lead AP1000 projects into the licensing and development of SMRs and other advanced technologies.  

The success of these efforts will mean substantially improved process efficiency and plant economics, which is important to enable nuclear plants to provide the reliable and carbon free electricity that our industry, our country, and our planet so desperately need.

Comments

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why Nuclear Plant Closures Are a Crisis for Small Town USA

Nuclear plants occupy an unusual spot in the towns where they operate: integral but so much in the background that they may seem almost invisible. But when they close, it can be like the earth shifting underfoot.

Lohud.com, the Gannett newspaper that covers the Lower Hudson Valley in New York, took a look around at the experience of towns where reactors have closed, because the Indian Point reactors in Buchanan are scheduled to be shut down under an agreement with Gov. Mario Cuomo.


From sea to shining sea, it was dismal. It wasn’t just the plant employees who were hurt. The losses of hundreds of jobs, tens of millions of dollars in payrolls and millions in property taxes depressed whole towns and surrounding areas. For example:

Vernon, Vermont, home to Vermont Yankee for more than 40 years, had to cut its municipal budget in half. The town closed its police department and let the county take over; the youth sports teams lost their volunteer coaches, and Vernon Elementary School lost th…