Skip to main content

Someone Else’s Top Ten

oasys_x220 We know it’s getting to be top ten time of the year (and decade), but we’ve never really enjoyed these summary wrap-ups. After all, time like the tide is rather fluid and what seemed most important in the short term of a year fades before much more time has passed. Even the top ten movies or albums seem vagrant, the results of a passing fancy.

So, speaking for ourselves, we’ll probably bypass the mania for top ten and move right on to passing you along to someone else’s top ten list. It both confirms and spoils our potted formulation.

It is Greentechmedia’s Top Ten High Concepts of 2009. We actually like it because it focuses on items that may not come to fruition at all, but simply demonstrate the good work that goes on in industry and university labs all the time. The great thing about such projects is that they can be quite valuable even when not workable – the lessons learned can be quite instructive.

Take, for example, number 3:

Osmotic Pressure Gradients: In OPGs, fresh water passes through a membrane, drawn through by an inherent attraction to a vat of salty water on the other side. As the volume of water increases in the salty tank, pressure builds, which can be used to crank a turbine.

We’d have to read more about this to see how it decreases the pressure or what you do with the salinated fresh water – can’t put it back where you got it, presumably – but pretty neat.

But despite the interest in this and other entries like Instant Oil and a Solar Air Conditioner, we were interested in the first and second entries. Number 1:

Nuclear Goes Mod(ular): NuScale Power, Sandia National Labs, TerraPower and Babcock & Wilcox discussed plans to build and/or license small reactors that could produce 45 to 125 megawatts of power.

We’ve written about these a fair amount and they’ve picked up tremendous interest – both here, where a couple of bills encouraging their development are moving through Congress, and overseas, too, where their potential could be enormous.

If anything holds them back, it’s that no design has been approved by the NRC – none submitted, mind you, but still, such design licensing can take years and be a real business inhibitor. Hopefully, Congress can move on that, too, and provide resources so the NRC can review these units quickly.

And number 2:

Fusion: Livermore National Labs showed off a system in which 192 high powered lasers focused on tiny capsule of hydrogen could generate fusion power.

When we’ve written about fusion, it’s usually to make fun of it – not that it shouldn’t be taken seriously, even by us. But it’s been around long enough that it has inspired a fan base that has followed its travails for years and years (and inspires hobbyists to make their own fusion reactors). Maybe it’s that there’s a faint whiff of alchemy around fusion, as it takes the electricity generation of a small country to light a bulb. We joke, but getting the resource-to-result ratio right is a big stumbling block.

Here’s the next sentence in the entry on fusion: “Scientists hope to show it can work in 2010 or 2011.” As we always do (and have for years and years), we wish them luck.

Read the whole thing – lots of fun technology.

An osmotic pressure plant. Osmotic pressure works the other way, too, desalinating water.

[Oasys] is using what it calls engineered osmosis. Unlike conventional desalination systems, the Oasys system establishes an osmotic pressure gradient instead of using pressure or heat to force water through a purifying membrane. The approach exploits the fact that water naturally flows from a dilute region to one that's more concentrated when the two solutions are separated by a semipermeable material, thereby saving the energy normally needed to drive the process.

So, to answer our question above, we presume you can do a two way osmotic pressure exchange that both salinates and desalinates water. See here for more.

Comments

perdajz said…
Fusion has a huge stumbling: fission. When researchers first started looking at fusion decades ago, it seemed to offer advantages in safety and waste disposal. In the decades since, fission reactors (LWR in particular) have performed so well that it is not at all clear how fusion can ever become competitive. It will be impossible to beat the safetey record of the LWR, and waste disposal for current fuel cycles is a small, manageable issue. For the foreseeable future, uranium and/or thorium will stay cheap. There is no reason to think that a fusion reactor would be safer or more reliable than a LWR. With capacity factors well in the 90's for the current fleet, how could a fusion reactor be more reliable than a LWR?
Anonymous said…
Perhaps NEINN has already reviewed this, but Seife's "Sun in a Bottle" hammers fusion pretty hard. It's a good history book.

Popular posts from this blog

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

New Home for Our Blog: Join Us on NEI.org

On February 27, NEI launched the new NEI.org. We overhauled the public site, framing all of our content around the National Nuclear Energy Strategy.

So, what's changed?

Our top priority was to put you, the user, first. Now you can quickly get the information you need. You'll enjoy visiting the site with its intuitive navigation, social media integration and compelling and shareable visuals. We've added a feature called Nuclear Now, which showcases the latest industry news and resources like fact sheets and reports. It's one of the first sections you'll see on our home page and it can be accessed anywhere throughout the site by clicking on the atom symbol in the top right corner of the page.
Most importantly for you, our loyal NEI Nuclear Notes readers, is that we've migrated the blog to the new site. Moving forward, all blog posts will be published in the News section, along with our press releases, Nuclear Energy Overview stories and more. Just look for the &qu…

Hurricane Harvey Couldn't Stop the South Texas Project

As Hurricane Harvey battered southeast Texas over the past week, the devastation and loss of life in its wake have kept our attention and been a cause of grief.

Through the tragedy, many stories of heroics and sacrifice have emerged. Among those who have sacrificed are nearly 250 workers who have been hunkered down at the South Texas Project (STP) nuclear plant in Matagorda County, Texas.

STP’s priorities were always the safety of their employees and the communities they serve. We are proud that STP continued to operate at full power throughout the storm. It is a true testament to the reliability and resiliency of not only the operators but of our industry.

The world is starting to notice what a feat it is to have maintained operations through the catastrophic event. Forbes’ Rod Adams did an excellent job describing the contribution of these men and women:

“STP storm crew members deserve to be proud of the work that they are doing. Their families should take comfort in the fact that…