Skip to main content

Berkeley Gets Ready for the Next Generation

Seaborg and Kennedy enjoy some cookies.

Sometimes, it’s a good idea to take a step back from the news of the day and think more about the larger implications of a subject that interests us. For Nuclear Notes readers, that means nuclear energy.

And for me, that means the chance a reactivated industry gives a lot of really smart people to work on making nuclear energy technology the best it can be. It’s a chance for America to rebuild some of its technological edge and enhance our global competiveness. 

One of the centers of excellence in nuclear engineering has traditionally been the University of California at Berkeley. It produced some of the greatest breakthroughs and some of the top scientists in the field: Glenn Seaborg, Ernest Lawrence, and his brother, John Lawrence, to name just a few.

Seaborg, in particular, has the kind of life story that makes you question what you’ve been doing with your time: a Nobel prize before he was 40; section head on the Manhattan project; advisor to presidents Kennedy, Johnson and Reagan; the discoverer of “countless” atomic isotopes and ten (ten!) elements, including plutonium and, yes, seaborgium. You know you’ve made it, when you get an element in the periodic table named after you.

In the light of this legacy, it was nice to read the lead story on the UC Berkeley engineering news site last week about “Rethinking Nuclear Power,” and the nuclear fission research being done today at the university. They interviewed Brian Wirth, an engineer at UC Berkeley, who had some interesting things to say about the restart of the domestic nuclear energy industry.

“The 104 nuclear plants now in operation represent the largest source of carbon-free electricity in the country,” says Wirth, associate professor of nuclear engineering. “The nuclear pendulum is swinging back, but we have to work really hard because, in some cases, we’ve let the technology go dormant.”

One of the things that first struck me when I joined the nuclear industry was the public perception—which I shared at the time—that nuclear technology is stagnant or, at least, moves very slowly. And while new generations of reactors may not keep pace with new iterations of your iPod, Blackberry or Web browser—reactor technology is by no means stagnant. Right now most operating reactors worldwide are Gen II. The new reactors being currently deployed, like AREVA’s EPR and Westinghouse’s AP1000, are Gen III+. Gen IV is a bit further down the road with commercial introduction “between 2015 and 2030 or beyond,” according to the Generation IV International Forum.

When they approach a new generation of reactors, nuclear scientists, like all good scientists, think about ways to improve them. That means working to find ways to increase fuel efficiency (in this case, uranium), reduce waste (used nuclear fuel), conserve water and reduce the overall environmental impact of the technology—just like other researchers do with fossil fuels, biofuels and other renewables. Wirth discusses some of these future directions in Gen IV research: 

“As opposed to the light-water design used in existing fission reactors, many of the proposed fourth-generation nuclear reactors will use a closed fuel cycle, which some say could increase uranium efficiency from a few percentage points to in excess of 90 percent, essentially destroying more radioactive waste than it produces.”

Earlier, DOE Secretary Steven Chu, former professor of physics at Berkeley, hinted at wringing greater fuel efficiency out of uranium in an interview with the WSJ:

“We are also accelerating our R&D efforts into other innovative reactor technologies. This includes … advanced reactor designs that will harness much more of the energy from uranium.”

In addition to Wirth, Per Peterson, Berkeley professor of nuclear physics and recent appointee to the blue ribbon commission, has been deeply involved in nuclear fission research at Berkeley. On the Berkeley nuclear physics department’s home page, Peterson talks about Gen IV’s potential for providing clean transportation fuels and drinking water. 

“Work is underway to develop advanced fuel cycle and Generation IV reactor technologies that can consume nuclear wastes while providing economic and secure supplies of electricity, low-carbon transportation fuels, and desalinated water.”

Gen IV is still decades away, but it’s good to know that until then Berkeley, and other nuclear physicists at our national labs and universities across the country, will be taking up the work of driving this technology forward and working to make nuclear energy safer, cleaner and more efficient than ever. America, and the world, stand to benefit.


One way to get a parking space on campus at Berkeley? Win the Nobel Prize. Seriously.



Charles Barton said…
Is Generation IV really decades away? With a concerted effort we could see commercial deployment in as few as 10 years. india's commercial FBR will come on line next year and will quickly be followed by serial manufacture. India plans to have over 300 FBRs by 2050. If India can do that, the United States can have commercial fast or thermal breeders by 2020, and build hundreds by 2030.
Sterling Archer said…
GenIV will seriously test the materials science and metallurgy community. Try the Jun 2009 "JOM" (Journal of Metals) or the January 2009 and April 2008 "Materials Research Society Bulletin".
David Bradish said…
Charles, DOE sent its NGNP report to Congress several days ago. It in, they have a schedule of deployment and licensing over the next 10 years for a 4th generation reactor as well as a milestone for a unit to be operating by 2021. I've been looking for a link to the report but haven't found it yet.
TJ Swanek said…
Charles & Co.,
Here’s the NGNP link:
gunter said…
that's radioactive as well as reactivated, I hasten to mention...
Sterling Archer said…
Gunter --

Your pronoun ("that") is missing its antecedent. To what do you refer?
Anonymous said…
Gunter means the whole world is radioactive, it's an essential force of nature that contributed to the evolution of the diverse life on this planet...

He finally realizes radioactivity is natural, green, renewable, and not to be zealously feared and persecuted.

It's even been endorsed by the current Democratic Regime!

Popular posts from this blog

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

New Home for Our Blog: Join Us on

On February 27, NEI launched the new We overhauled the public site, framing all of our content around the National Nuclear Energy Strategy.

So, what's changed?

Our top priority was to put you, the user, first. Now you can quickly get the information you need. You'll enjoy visiting the site with its intuitive navigation, social media integration and compelling and shareable visuals. We've added a feature called Nuclear Now, which showcases the latest industry news and resources like fact sheets and reports. It's one of the first sections you'll see on our home page and it can be accessed anywhere throughout the site by clicking on the atom symbol in the top right corner of the page.
Most importantly for you, our loyal NEI Nuclear Notes readers, is that we've migrated the blog to the new site. Moving forward, all blog posts will be published in the News section, along with our press releases, Nuclear Energy Overview stories and more. Just look for the &qu…

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?