Skip to main content

Berkeley Gets Ready for the Next Generation

Seaborg and Kennedy enjoy some cookies.

Sometimes, it’s a good idea to take a step back from the news of the day and think more about the larger implications of a subject that interests us. For Nuclear Notes readers, that means nuclear energy.

And for me, that means the chance a reactivated industry gives a lot of really smart people to work on making nuclear energy technology the best it can be. It’s a chance for America to rebuild some of its technological edge and enhance our global competiveness. 

One of the centers of excellence in nuclear engineering has traditionally been the University of California at Berkeley. It produced some of the greatest breakthroughs and some of the top scientists in the field: Glenn Seaborg, Ernest Lawrence, and his brother, John Lawrence, to name just a few.

Seaborg, in particular, has the kind of life story that makes you question what you’ve been doing with your time: a Nobel prize before he was 40; section head on the Manhattan project; advisor to presidents Kennedy, Johnson and Reagan; the discoverer of “countless” atomic isotopes and ten (ten!) elements, including plutonium and, yes, seaborgium. You know you’ve made it, when you get an element in the periodic table named after you.

In the light of this legacy, it was nice to read the lead story on the UC Berkeley engineering news site last week about “Rethinking Nuclear Power,” and the nuclear fission research being done today at the university. They interviewed Brian Wirth, an engineer at UC Berkeley, who had some interesting things to say about the restart of the domestic nuclear energy industry.

“The 104 nuclear plants now in operation represent the largest source of carbon-free electricity in the country,” says Wirth, associate professor of nuclear engineering. “The nuclear pendulum is swinging back, but we have to work really hard because, in some cases, we’ve let the technology go dormant.”

One of the things that first struck me when I joined the nuclear industry was the public perception—which I shared at the time—that nuclear technology is stagnant or, at least, moves very slowly. And while new generations of reactors may not keep pace with new iterations of your iPod, Blackberry or Web browser—reactor technology is by no means stagnant. Right now most operating reactors worldwide are Gen II. The new reactors being currently deployed, like AREVA’s EPR and Westinghouse’s AP1000, are Gen III+. Gen IV is a bit further down the road with commercial introduction “between 2015 and 2030 or beyond,” according to the Generation IV International Forum.

When they approach a new generation of reactors, nuclear scientists, like all good scientists, think about ways to improve them. That means working to find ways to increase fuel efficiency (in this case, uranium), reduce waste (used nuclear fuel), conserve water and reduce the overall environmental impact of the technology—just like other researchers do with fossil fuels, biofuels and other renewables. Wirth discusses some of these future directions in Gen IV research: 

“As opposed to the light-water design used in existing fission reactors, many of the proposed fourth-generation nuclear reactors will use a closed fuel cycle, which some say could increase uranium efficiency from a few percentage points to in excess of 90 percent, essentially destroying more radioactive waste than it produces.”

Earlier, DOE Secretary Steven Chu, former professor of physics at Berkeley, hinted at wringing greater fuel efficiency out of uranium in an interview with the WSJ:

“We are also accelerating our R&D efforts into other innovative reactor technologies. This includes … advanced reactor designs that will harness much more of the energy from uranium.”

In addition to Wirth, Per Peterson, Berkeley professor of nuclear physics and recent appointee to the blue ribbon commission, has been deeply involved in nuclear fission research at Berkeley. On the Berkeley nuclear physics department’s home page, Peterson talks about Gen IV’s potential for providing clean transportation fuels and drinking water. 

“Work is underway to develop advanced fuel cycle and Generation IV reactor technologies that can consume nuclear wastes while providing economic and secure supplies of electricity, low-carbon transportation fuels, and desalinated water.”

Gen IV is still decades away, but it’s good to know that until then Berkeley, and other nuclear physicists at our national labs and universities across the country, will be taking up the work of driving this technology forward and working to make nuclear energy safer, cleaner and more efficient than ever. America, and the world, stand to benefit.

  clip_image005

One way to get a parking space on campus at Berkeley? Win the Nobel Prize. Seriously.

 

Comments

Charles Barton said…
Is Generation IV really decades away? With a concerted effort we could see commercial deployment in as few as 10 years. india's commercial FBR will come on line next year and will quickly be followed by serial manufacture. India plans to have over 300 FBRs by 2050. If India can do that, the United States can have commercial fast or thermal breeders by 2020, and build hundreds by 2030.
Sterling Archer said…
GenIV will seriously test the materials science and metallurgy community. Try the Jun 2009 "JOM" (Journal of Metals) or the January 2009 and April 2008 "Materials Research Society Bulletin".
David Bradish said…
Charles, DOE sent its NGNP report to Congress several days ago. It in, they have a schedule of deployment and licensing over the next 10 years for a 4th generation reactor as well as a milestone for a unit to be operating by 2021. I've been looking for a link to the report but haven't found it yet.
Thaddeus Swanek said…
Charles & Co.,
Here’s the NGNP link: http://nuclear.energy.gov/pdfFiles/NGNP_ReporttoCongress_2010.pdf
gunter said…
that's radioactive as well as reactivated, I hasten to mention...
Sterling Archer said…
Gunter --

Your pronoun ("that") is missing its antecedent. To what do you refer?
Anonymous said…
Gunter means the whole world is radioactive, it's an essential force of nature that contributed to the evolution of the diverse life on this planet...

He finally realizes radioactivity is natural, green, renewable, and not to be zealously feared and persecuted.

It's even been endorsed by the current Democratic Regime!

Popular posts from this blog

Fluor Invests in NuScale

You know, it’s kind of sad that no one is willing to invest in nuclear energy anymore. Wait, what? NuScale Power celebrated the news of its company-saving $30 million investment from Fluor Corp. Thursday morning with a press conference in Washington, D.C. Fluor is a design, engineering and construction company involved with some 20 plants in the 70s and 80s, but it has not held interest in a nuclear energy company until now. Fluor, which has deep roots in the nuclear industry, is betting big on small-scale nuclear energy with its NuScale investment. "It's become a serious contender in the last decade or so," John Hopkins, [Fluor’s group president in charge of new ventures], said. And that brings us to NuScale, which had run into some dark days – maybe not as dark as, say, Solyndra, but dire enough : Earlier this year, the Securities Exchange Commission filed an action against NuScale's lead investor, The Michael Kenwood Group. The firm "misap

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin