Skip to main content

Megatons to Megawatts: The Lowdown on the Blend Down

megatonslogo_220 Last week, President Obama hosted a Nuclear Security Summit here in D.C. and now that we’ve recovered from the traffic jams, it’s time to take a closer look.

At the summit, government leaders from around the world agreed to “join President Obama’s call to secure all vulnerable nuclear material in four years.” At the end of the summit, representatives from 47 countries issued a communiqué detailing plans to reach this goal.

A couple of things struck us about the communiqué, first, there’s the focus on highly-enriched uranium (HEU) and plutonium either of which could be used to make a nuclear weapon.

[Low-enriched uranium (LEU), generally enriched to 3 or 5 percent, is used as fuel in commercial nuclear reactors and can’t be used to make a nuclear weapon. Only high-enriched uranium (HEU)— enriched to 90 percent U-235 —can be used to make a nuclear weapon.]

The signatories agreed to: 

“Recognize that highly enriched uranium and separated plutonium require special precautions and agree to promote measures to secure, account for, and consolidate these materials, as appropriate; and encourage the conversion of reactors from highly enriched to low enriched uranium fuel and minimization of use of highly enriched uranium, where technically and economically feasible.”

They also agreed to:          

“Recognize the continuing role of nuclear industry … in nuclear security and will work with industry to ensure the necessary priority of physical protection, material accountancy, and security culture.”

A good example of a successful partnership between industry and governments has been the Megatons to Megawatts program. The program is a 20-year, $8 billion government/industry partnership that is converting HEU from dismantled Russian and American nuclear warheads into LEU for use as fuel in U.S. nuclear power plants.

The program focuses on HEU—not plutonium. The path for plutonium from a warhead would be a bit different—essentially ending in mixed oxide (MOX) fuel—but that’s a subject for a different time.

America generates about 10 percent of its electricity, roughly half of all of its nuclear power, using fuel from the Megatons to Megawatts program. Last time we checked in with the program it had downblended (that is, converted) 325 tons of Russian HEU, the equivalent of 13,000 nuclear warheads, into LEU. As of the end of last year the program had downblended 382 metric tons of HEU into 11,047 metric tons of LEU, or the equivalent of 15,294 nuclear warheads.

For those of you who want to get deeper into this, here’s the step-by-step process from Russian warhead to fuel assembly in America. By the way, this process is monitored by the National Nuclear Security Administration’s HEU Transparency Program. The goal of the NNSA program is to ensure “that the material is derived from weapons, processed, and converted to a nonweapons-useable form.”

By 2013, the program hopes to have downblended 500 metric tons of HEU or 20,000-warheads equivalent. This is a tremendous amount of energy. By USEC’s estimates enough fuel to power the entire United States for about two years.

There are other programs to downblend HEU: the blended low-enriched uranium (BLEU) program for 40 tons of HEU, the Reliable Fuel Supply program for 17.4 tons of HEU from dismantled warheads to start an international fuel bank. But Megatons to Megawatts, because of the large volume of material involved and the long duration of the program provides a framework for how industry and governments can work together to secure weapons-grade materials, transport them safely and then convert them into something economically useful that cannot be used to make a weapon. The program indicates a path forward for the successful disposition of weapons-grade materials that countries have chosen to eliminate or relinquish. As such, it helps answer the question: what do you do with this material once it is secured?

At the end of the process, the LEU burns up and as it does, we get carbon-free electricity to light our homes, run our businesses and keep industry humming. It’s hard to think of a greater peace dividend than that.

Well put:

“Eliminating this vast quantity of weapons-usable HEU reduces nuclear risk by ensuring that this material can never be stolen or diverted.” – NNSA

Comments

Anonymous said…
Downblending is an enormous waste of the separative work expended to enrich the uranium in the first place. Considering all of the other things we could be doing with HEU, it sickens me to think about downblending, and how happily it is accepted by the general public as a "good thing".
Anonymous said…
Indeed, the processing centers where HEU is downblended are well protected. However, it is unclear to me how well the HEU is protected as it travels thousands of miles across Russia from storage to processing. Perhaps this is intentionally kept secret, but is still worrisome.
Ed Picazo said…
How the world turns - we should now be worried about secure transport of material (that as a kid I used to worry would cause "nuclear winter") to use as home heating fuel (original enrichment expense borne by the USSR). In some ironical way, this is a quite better way of combating "global warming" than the originally intended design...

Popular posts from this blog

Fluor Invests in NuScale

You know, it’s kind of sad that no one is willing to invest in nuclear energy anymore. Wait, what? NuScale Power celebrated the news of its company-saving $30 million investment from Fluor Corp. Thursday morning with a press conference in Washington, D.C. Fluor is a design, engineering and construction company involved with some 20 plants in the 70s and 80s, but it has not held interest in a nuclear energy company until now. Fluor, which has deep roots in the nuclear industry, is betting big on small-scale nuclear energy with its NuScale investment. "It's become a serious contender in the last decade or so," John Hopkins, [Fluor’s group president in charge of new ventures], said. And that brings us to NuScale, which had run into some dark days – maybe not as dark as, say, Solyndra, but dire enough : Earlier this year, the Securities Exchange Commission filed an action against NuScale's lead investor, The Michael Kenwood Group. The firm "misap

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin