Skip to main content

On The Containment Vessel Damage at Fukushima Daiichi Unit 1

Early on Wednesday morning, the Dow Jones News Wire first reported the following from Japan, before the rest of the mainstream media got hold of the story today:
The melted nuclear fuel within the No. 1 unit at the Fukushima Daiichi power plant was of such intensity that it eroded through 2 meters of the 2.6 meter (8.5 feet) concrete base, plant operator Tokyo Electric Power Co. said in a report issued on Wednesday. 

Yesterday here at the office, we huddled with a representative of TEPCO to get a better understanding of the report, and share some additional facts that puts this information into the proper context. What's been reported is a very conservative mathematical analysis that has yet to be physically confirmed. In other words, this is a worst case scenario. And as we've seen in our industry, even in the worst case scenario, there is still a very significant safety margin.

A quick read of the article could give one the impression that the melted core was a little more than half a meter -- about 2 feet -- from reaching the external environment. I think it’s important to note that according to the TEPCO analysis only .7 meters (a little more than two feet) of concrete was actually eroded.  In addition, as we've written before, plants have multiple redundant safety systems in place to protect the public, and that's exactly the case with Fukushima Daiichi Unit 1.

In addition to the 2.6 meters (about 8.5 feet) of steel reinforced concrete inside the containment vessel, underneath the steel shell of the containment vessel lies another 7.6 meters (about 25 feet) of basemat reinforced concrete and steel. Altogether, that means there was 10.2 meters (about 33.5 feet) of reinforced concrete and steel standing between the reactor core and the outside of the plant before the accident.

Even if 2 meters (about 6.5 feet) of that structure has been eroded, another 8.2 meters (almost 27 feet) of reinforced steel and concrete lies between the melted fuel and the external environment.

It’s also important to note that according to tests of air samples from inside containment, it appears that the process of erosion – called corium interaction – has essentially ceased and no further damage is occurring at this time. If that process is still continuing, it is doing so at such a slow rate that TEPCO has more than enough time to develop a mitigation strategy.

Comments

Will Davis said…
I am very glad that NEI has made a post on this topic, because the melt damage is almost certain to be misinterpreted quite widely. I made a post myself including an illustration to show just how much more the corium would have to penetrate to reach the grade, much less exit the building and enter the ground or groundwater... essentially echoing NEI's post (which I admire for its clarity and brevity.) http://atomicpowerreview.blogspot.com/2011/11/tepco-reporting-on-vessel-failure.html
Anonymous said…
I would like to know the release pathways from the PV. I read the one report from ORNL (I think) wherein it was noted that the most likely pathways out of the BWR PV during a significant core melting event were the instrument tube penetrations at the vessel base, not a large-scale breach of the vessel itself.

This is important because I've seen postings on various blogs from anti-nuke kooks showing shome of the building damage extending through the walls and claiming this was "corium". I've seen other kooks claiming that "no one has studied" the behavior of liquid corium, even though a cursory search using Google turned up over a dozen references to scientific studies of core melt behavior, transport coefficients, heat transfer rates, etc. Real, measured scientific data, although probably beyond the comprehension of most of the kooks.

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…