Skip to main content

What Is “Cold Shutdown?”

Several news articles late this week have reported that Japan’s Fukushima Daiichi nuclear plant may be in “cold shutdown” by mid-December. Although the reports are mostly accurate, there is a difference between the traditional “cold shutdown” of a nuclear plant and what is happening at Fukushima.

First, what is cold shutdown? The U.S. Nuclear Regulatory Commission defines it as:

The term used to define a reactor coolant system at atmospheric pressure and at a temperature below 200 degrees Fahrenheit following a reactor cooldown.

In non-nuclear speak, it basically means the conditions within the nuclear reactor are such that it would be impossible for a chain reaction to occur. This term usually comes into play whenever a reactor is shut down periodically for refueling or for the final time prior to the long-term before it is decommissioned. When a reactor is in cold shutdown, the reactor pressure vessel (RPV) can be safely opened with great care and additional water is added to the cavity above the vessel for shielding to permit safe handling of the fuel for refueling (replacing depleted fuel elements) or defueling (removing the entire core).

C:\WINDOWS\Desktop\Text\03 with colored photos.wpdIn Fukushima Daiichi’s case, achieving the strict definition of “cold shutdown” is not possible because the RPVs have been breached. This means that the RPVs will not hold water (currently the cooling water is flowing through them) and some of the melted fuel may not be in the vessel, but rather on the floor below, which is still within the primary containment. To clean up the plant, Tokyo Electric Power Company (TEPCO), the plant’s owner and operator, will work with the Japanese government and other parties to develop a long-term plan that will include removing the damaged fuel.

TEPCO understood this important nuance to achieving “cold shutdown” early on this year when it developed its initial recovery plans and developed a new term, “cold shutdown condition,” which applies to how they are bringing the reactors to stable condition. Their definition is as follows:

  • Temperature of RPV bottom is, in general, below 100 degrees Celsius.
  • Release of radioactive materials from PCV is under control and public radiation exposure by additional release is being significantly held down. (Not exceed 1 mSv/y at the site boundary as a target.)

By their definition, the Fukushima Daiichi reactors will reach “cold shutdown condition” once they are below boiling point and are no longer releasing significant amounts of radiation into the atmosphere. This new definition, thus, has an important distinction between the more commonly used “cold shutdown,” which typically takes place at a nuclear plant under normal conditions.

Reaching “cold shutdown conditions” at Fukushima Daiichi, however, has been an extremely difficult task for TEPCO workers given the conditions at the site and is a very significant milestone in their recovery efforts. TEPCO expects to reach this condition in just a few weeks by the end of 2011.

Graphic: Schematic of Reactor Design at Fukushima Daiichi


Anonymous said…
The NRC definition is different than the Tech Spec definition of CSD. Atmospheric pressure is not a TS requirement, I hope. We'd always be in 3.0.4 the second we exceeded 1 psig.

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.

Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …