Skip to main content

Energy Outlook on the Gore Testimony

As we noted earlier this week, during his testimony on Capitol Hill this week, former Vice President Al Gore went to pains to say he wasn't reflexively anti-nuclear, though he added that he believed a combination of distributed generation and "smart-grid" technology could obviate the need to build new baseload generating capacity.
Mr. [Gore] worked hard to avoid sounding rigidly anti-nuclear, focusing instead on concerns about waste storage--he opposes the Yucca Mountain waste facility--and the very large capital costs involved in building new nuclear plants. Yet despite these issues, we are likely to see the first new nuclear plant in this country in two decades get its permits within a few years. The cloud of uncertainly that the recent TXU deal has cast over new coal-fired power plants will inevitably improve the prospects for new nukes.

To refine a statistic tossed out by one Senator, in 2005 nuclear power contributed 68% of all the low-carbon electricity generated in the US. As we contemplate a cap on carbon emissions and a carbon tax or an emissions trading system--or both, as Mr. Gore advocated Wednesday--the market value of all those green electrons from wind, solar, hydropower and nuclear will go up significantly. I doubt we can rely exclusively on wind and solar energy to provide all the green electricity we'll need, and efficiency won't eliminate the role of central power plants. I'd be very surprised if the greener world we need to create didn't also feature a bigger contribution from nuclear power.
I'm sure Mr. Gore would be surprised too.


Anonymous said…
Al Gore deserves credit for taking a lot of effort, for a lay person, to study the science behind global warming. I think that he is right that the current evidence is sufficient to support a call to action to reduce our carbon emissions. But now Mr. Gore needs to study the science behind geologic isolation of nuclear wastes, and to reconsider his opposition to the Yucca Mountain repository. Currently for climate change, our predictions for the next 100 years have substantial uncertainty. For geologic isolation of nuclear wastes, we can make scientifically sound predictions for probable behavior over the next one million years. And what does the science tell us? For geologic isolation of nuclear wastes, the worst long term consequence would be contamination of small amounts of ground water tens of thousands of years in the future. If, in the future, our great-great-great-grandchildren were to decide that they have a better approach to manage the materials we would put into Yucca Mountain, they can take them out with little difficultly. If only the same were true for carbon dioxide. Mr. Gore may not want to upset Mr. Reid, but the truth is that the United States needs a safe, secure place to put the residual wastes that come from using nuclear energy, and all of the current evidence says that Yucca Mountain is just fine for this purpose. Let's move forward and get a license application docketed for Yucca Mountain.
Doug said…
Well, the opposition to Yucca is pretty obvious NIMBYism. That said, we'd be a lot better off if we ended the reprocessing ban. We'd be able to stretch the nuclear fuel supply that much longer and reduce both the volume and lifespan of the waste.
don kosloff said…
Vice President Gore needs to read about Oklo, if he is actually worried about the capability of Yucca Mountain.
Russell J. Lowes said…
Nuclear is not a zero CO2 emission power source. That's a no-brainer! There are twenty steps to the fuel and power production cycle for nuclear energy, compared with seven for fossil fuel. Here is a summary of these steps.
Seven life-cycle steps of fossil fuels:
1 mine, powered by oil
2 transport to plant, powered by oil and electricity, mostly coal
3 combustion, powered by the fossil fuel from the plant
4 scrub emissions, powered by fossil plant energy
5 dispose of toxins, powered mostly by oil
6 build plant, powered by oil
7 dismantle plant, powered by oil
Twenty lifecycle steps to the nuclear fuel cycle
1 mining 0.3% U3O8 ore, powered by oil
2 milling to 100% U3O8, powered by oil
3 conversion to UF6, including several sub-steps of chemical processing, powered by oil mostly
4 enrichment: take the milled uranium which is .7% U235 and 99.3% and U238 to get the U235 up to 3.2%, powered by electricity, mostly coal
5 reconversion to U308 with 3.2% of that being U235, powered by oil and electricity which is mostly from coal
6 fabrication, powered by oil to mine the zircaloy fuel cladding
7 using the fuel in the reactor, powered by the nuclear fuel itself
8 taking out the spent fuel and putting it into interim storage in spent fuel ponds, powered by energy from the nuclear plant
9 isolating and guarding waste of the long-term storage phase of spent fuel (perhaps two steps), powered by energy from the nuclear plant and off-site electricity mostly from coal and from oil in the creation of the matrix, I am guessing on this one, since the technology is evolving
10 isolating and guarding waste of uranium mining tailings, powered by oil
11 isolating and guarding waste of mill tailings, powered by oil
12 isolating and guarding waste of conversion machinery contamination, powered by oil
13 isolating and guarding waste of enrichment machinery contamination, powered by oil
14 isolating waste of re-conversion machinery contamination and the associated depleted uranium, powered by oil
15 isolating and guarding waste from the fabrication process, powered by oil
16 retrieval of stolen waste
17 concurrently with the waste steps, setting up coordination of the nuclear waste plan, including policing, maintenance and repair of containment, criminal investigation and prosecution, cleanup from terrorist or accidental contamination (these systems do have their energy inputs, though difficult to quantify), powered by oil for transportation and construction of structures and electricity

-- There are the additional 3 steps of the nuclear plant cycle:
18 construction of the plant, powered by oil
19 operation of the plant, powered by the nuclear fuel
20 dismantlement of the plant and isolation from the environment, powered by oil

Of course, there is some speculation about the fuel source for some of these steps, due to many of them being performed in the future.
However, it is not reasonable to say that nuclear power does not emit CO2.

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…

Innovation Fuels the Nuclear Legacy: Southern Nuclear Employees Share Their Stories

Blake Bolt and Sharimar Colon are excited about nuclear energy. Each works at Southern Nuclear Co. and sees firsthand how their ingenuity powers the nation’s largest supply of clean energy. For Powered by Our People, they shared their stories of advocacy, innovation in the workplace and efforts to promote efficiency. Their passion for nuclear energy casts a bright future for the industry.

Blake Bolt has worked in the nuclear industry for six years and is currently the work week manager at Hatch Nuclear Plant in Georgia. He takes pride in an industry he might one day pass on to his children.

What is your job and why do you enjoy doing it?
As a Work Week Manager at Plant Hatch, my primary responsibility is to ensure nuclear safety and manage the risk associated with work by planning, scheduling, preparing and executing work to maximize the availability and reliability of station equipment and systems. I love my job because it enables me to work directly with every department on the plant…