Skip to main content

Revisiting Nuclear Energy and Cooling Water

Earlier this week, the journal Nature Climate Change published a study concerning how warmer weather and reduced river flows might impact electricity generation at nuclear and coal-fired power plants. Here's how Reuters reported the findings:
In a study published on Monday, a team of European and U.S. scientists focused on projections of rising temperatures and lower river levels in summer and how these impacts would affect power plants dependent on river water for cooling.

The authors predict that coal and nuclear power generating capacity between 2031 and 2060 will decrease by between 4 and 16 percent in the United States and a 6 to 19 percent decline in Europe due to lack of cooling water.
The nuclear energy industry isn't unfamiliar with the topic. Here at NEI Nuclear Notes, we first dealt with the issue during the Summer of 2006 when a heat wave struck Europe and forced a number of nuclear plants to reduce power.

Back then, our points were pretty clear: the industry was well aware of the situation and that there were a number of adaptations that could be implemented in order to mitigate it. When we revisited the issue in response to a study by the Union of Concerned Scientists back in November 2011, I turned to one of our policy experts, Bill Skaff, to handle the question. I spoke with Bill again this week about the latest study, and he passed along the following note to me:
Environmentally conscious regulators and companies are already taking into account flow, discharge temperature, and intake temperature projections when locating and permitting new power plants and other industrial facilities. The Nature study’s time parameters remind us that gradual change allows time for adaptation. Additionally, there are engineering solutions being implemented today that can mitigate climate change impact. For instance, Browns Ferry is building small cooling towers to pre-cool discharge water.

Sustainable development will require electricity for quality of life and a mix of energy sources to generate that electricity—renewable, nuclear, and fossil. We must balance all environmental, social, and economic factors and make trade-offs when considering what energy source or cooling system to deploy at each of our diverse ecosystems around the country.

Wind and solar energy use very little water, but their electricity output is variable and intermittent. An electricity grid can only balance a limited amount of these electricity shortfalls, limiting how much renewable energy can be accommodated by a grid before it becomes unstable and black outs occur. Moreover, the variable, intermittent output of these renewables is usually balanced by fossil plants, which emit carbon dioxide and air pollutants.

The electricity grid requires steady, reliable baseload electricity—the output of nuclear and fossil plants. Nuclear power plant water use is comparable to coal plants. Natural gas uses less water, but produces half as much carbon dioxide as a coal plant as well as nitrogen oxides, which contribute to ground level ozone formation, a cause of respiratory ailments. By contrast, nuclear power plants produce no greenhouse gases or air pollutants during operations.
--------------------------------------------------------------
EPRI, Water & Sustainability, Vol. 3 U.S. Water Consumption for Power Production, 2002, p. viii. National Energy Technology Laboratory (G. J. Stiegel, J. R. Longanbach, M. D. Rutkowski, M. G. Klett, N. J. Kuehn, R. L. Schoff, V. Vaysman, J. S. White), Power Plant Water Usage and Loss Study, August 2005, revised May 2007, p. xiii.

Comments

Kit P said…
One of the recommendations in the report is making natural gas plants more efficient. So how do we do that?

Inefficient SSGT are made more efficient CCGT by using cooling water to condense steam. There you have it; the solution becomes part of the problem.
Colin Megson said…
Let coal decline - we all want it to. But for nuclear, the answer is so simple - generate our electricity and process heat using high temperature reactors which, if the 'waste' heat can't be put to a useful purpose, can be air cooled.

However, high temperature 'waste' heat can be used to desalinate, to produce vast quantities of potable water from brackish groundwater and seawater. It can also be used to implement a hydrogen economy, whereby all liquid fuels can be made carbon neutral, by using atmospheric CO2 in their production. Likewise carbon-neutral ammonia can be made from atmospheric N2 and used as feed stock for fertilisers, to maintain agricultural production to feed 9 billion people.

There is one outstanding reactor that can do all of this and also is inherently safe - it shuts down according to the laws of physics, even if all safety systems and all electrics are lost. The fuel in the reactor core starts life in the molten state, so no more TMI or Fukushima-Diiachi style meltdowns. It operates at atmospheric pressure, so there is no high powered 'driver' available to expel radiotoxic substances upwards and outwards into the environment. Also, its fuel is thorium - 3½ X more common than uranium and in sufficient abundance to be economically available until the end of time.

This silver-bullet answer to the most significant problems facing humankind, is the Liquid Fluoride Thorium Reactor (LFTR). Google: LFTRs to Power the Planet for all of the benefits.
Anonymous said…
I think it would be very smart if the cooling plants employed solar power in addition to generator and battery power to help the plants keep running better during a nuclear crisis. This would give the plant an infinite amount of time to cool the water down after a SCRAM - reducing the chances of a complete meltdown considerably. Thanks for listening. Steve Wise - Colorado Springs, Colorado

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why Nuclear Plant Closures Are a Crisis for Small Town USA

Nuclear plants occupy an unusual spot in the towns where they operate: integral but so much in the background that they may seem almost invisible. But when they close, it can be like the earth shifting underfoot.

Lohud.com, the Gannett newspaper that covers the Lower Hudson Valley in New York, took a look around at the experience of towns where reactors have closed, because the Indian Point reactors in Buchanan are scheduled to be shut down under an agreement with Gov. Mario Cuomo.


From sea to shining sea, it was dismal. It wasn’t just the plant employees who were hurt. The losses of hundreds of jobs, tens of millions of dollars in payrolls and millions in property taxes depressed whole towns and surrounding areas. For example:

Vernon, Vermont, home to Vermont Yankee for more than 40 years, had to cut its municipal budget in half. The town closed its police department and let the county take over; the youth sports teams lost their volunteer coaches, and Vernon Elementary School lost th…