Skip to main content

Rocky Mountain’s Real-World Data Blunders

The Rocky Mountain Institute’s summer newsletter “debunked” nuclear’s theology and their press release “doused the hype about ‘nuclear revival’ in an icy bath of real-world data”. Well, after checking out the data and doing some analyses, I was far from being doused. They argue that nuclear cannot help with climate change because it is too costly and is a "failed option". Their solution to climate change is cogeneration and renewables.

Here’s a quick summary of cogeneration and renewables:

In 2003, cogeneration accounted for 5% of total US electricity generation. Renewables accounted for 8%. Of this 5% of cogeneration, natural gas made up about 90% of its primary fuel. I could see why the graph in the newsletter was highlighting cogeneration, it’s because natural gas is booming right now.

The blunder with natural gas is that the prices are higher than the price of oil for electric generators. Check it out by looking at the EIA’s Short Term Outlook link above and selecting the Electricity tab of the Excel file. It’s under Fuel Prices which list coal, oil and natural gas. Utilities and investors thought natural gas would be an excellent buy because it was cheap and the US had plenty of it. But since 2002, natural gas prices have doubled.

Cogeneration is a good thing. It comes down to being more efficient at the way electricity is produced and steam used. But any fuel source could do this, even nuclear. It does help curb climate change, but not anywhere near the extent nuclear could. Your primary source of fuel is natural gas and it is still a fossil fuel which produces greenhouse gases.

Here’s my analysis of RMI’s analysis. Their graph and data in the newsletter was medicore at best and very misleading. I’ll give you four reasons why:

The graph they provided is only looking at capacity (GWe). What you should be looking at is generation, the real result. Typically when looking at renewables, you need three times as much capacity as nuclear to produce the same amount of electricity. Nuclear power plants’ capacity factor (how efficient a plant generates electricity) is the highest of any fuel source (90.5%). Renewables are in the 30% range, natural gas for cogeneration is about 40%.

The second reason the graph is misleading is because of yearly capacity increases. The reader only sees what was built in that year. What you should see in the graph is the total operating capacity in existence today. From the Department of Energy’s Annual Energy Outlook 2005, a table here shows the total capacity in 2003 and projected capacity for 2004 – 2025. Cogeneration and renewables make up about 15% of the US capacity and nuclear only makes up about 10%. But as I stated above, cogeneration and renewables made up a combined total of 13% of US electricity generation while nuclear was at 20%. It’s efficiency not quantity.

The third reason the graph is misleading is because it uses five different sources for its information. For example, when conducting a search on EWEA, they said that wind could supply 12% of the world’s electricity by 2020. After doing some calculations, 1,250 GW (the amount needed to achieve 12%) would be a wind farm the size of Texas. Let’s be realistic here, right now the total capacity in the US of wind is about 4 GW.

The fourth and final reason the graph is misleading is because it stops at 2010. The sources they use for nuclear are the International Atomic Energy Agency, World Nuclear Association, and the International Energy Agency. All are respectable sources. According to IAEA, there are 24 reactors being built. There are an additional 39 reactors planned, according to the WNA. It takes 5-10 years to build a nuclear reactor and the graph conceals what nuclear’s capacity will be when they are all built.

If you would have looked at the numbers in the 1970s, you would have seen nuclear’s capacity skyrocketing. In another 10-15 years, as the world has to make intelligent choices involving economic growth and environmental protection, it may begin skyrocketing again.

Technorati tags: , , , , ,

Comments

Lisa Stiles said…
We should keep a look out to see if any media sources pick up the RMI's press release and send a response citing David's excellent analyses.
DV8 2XL said…
In August 2003 there was a major electricity blackout in the eastern U.S. This meant the coal-fired power plants shut down, and weren't burning coal. It provided a unique opportunity to study what would happen if coal-emissions were reduced.

As power plants were turned down in south-east Canada and the north-east and mid-west US, levels of pollutants fell, says meteorologist Russell Dickerson.

His team from the University of Maryland in College Park flew an aircraft over the middle of the blackout zone 24 hours after the power had gone down. "This was a unique opportunity to explore what would happen to air quality if power station emissions were reduced," he says.

The team compared pollution levels over Pennsylvania with those on a similar hot, sunny day the year before. While there was no significant difference in levels of pollutants associated solely with traffic, other pollutants linked with power stations fell dramatically.

Sulphur dioxide levels decreased by 90 per cent, there was around half the amount of ozone and visibility increased by 40 kilometres.

9 May 2004, Exclusive from New Scientist Print Edition, Jenny Hogan
Rod Adams said…
Dave:

The "renewables" figure that you quoted is even more interesting when one scratches deeply down into the notes. Here are the sources that the Energy Information Agency considers in the "renewables" category and their relative importance within that category as of 2002, the latest year in which statistics are available.

Geothermal 4.13%
Hydro 75.25%
MSW/Landfill 5.75%
Biomass 0.76%
Solar 0.16%
Wind 2.95%
Wood 11.01%
(Source: Table C6. Total Renewable Net Generation by State, 2002 - Energy Information Agency)

In other words, take away conventional hydro power and you have very tiny contributions from "renewable" power. Take away combustion based - i.e. polluting - "renewable" fuels and you are down to the real contribution of new renewable power supplies after 30-40 years of heavy government subsidies.

Between wind, solar, and geothermal you get about six tenths of one percent of the electricity produced in the US. Since electricity is only about 1/3 of the total energy consumption, that means that all of the noise about wind and solar power is about something that produces two tenths of one percent of the energy used in the US each year.

Hardly worth the hot air.
Anonymous said…
If David Bradish would kindly read what I wrote more carefully, and look up its heavily documented backup paper (www.rmi.org/sitepages/pid171.php#E05-08), he'll find he's wrong on every count. Our data were global, not U.S.-specific, and hence reflect global market conditions including fuel prices. All technologies' capacity factors are empirical. The capacity graph's URL points to the TWh/y as well as the GW graphs and data, carefully documented to the technology-specific data from the respective industries (and IAEA, WNA, IEA, etc); the TWh/y and GW graphs (total, not incremental) are in the fall 05 RMI newsletter on www.rmi.org. Post-2010 world nuclear capacity goes down, not up, because retirements overwhelm additions: see Schneider & Froggatt, Nucl. Eng. Intl. pp. 36-38, June 2005. And contrary to a later comment, our analysis explicitly excludes all big hydro (>10 MWe).

Popular posts from this blog

Fluor Invests in NuScale

You know, it’s kind of sad that no one is willing to invest in nuclear energy anymore. Wait, what? NuScale Power celebrated the news of its company-saving $30 million investment from Fluor Corp. Thursday morning with a press conference in Washington, D.C. Fluor is a design, engineering and construction company involved with some 20 plants in the 70s and 80s, but it has not held interest in a nuclear energy company until now. Fluor, which has deep roots in the nuclear industry, is betting big on small-scale nuclear energy with its NuScale investment. "It's become a serious contender in the last decade or so," John Hopkins, [Fluor’s group president in charge of new ventures], said. And that brings us to NuScale, which had run into some dark days – maybe not as dark as, say, Solyndra, but dire enough : Earlier this year, the Securities Exchange Commission filed an action against NuScale's lead investor, The Michael Kenwood Group. The firm "misap

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin