Skip to main content

Bye, Bye, China Syndrome

The most terrifying vision of nuclear power from the ‘70’s was the image of the self-melting radioactive lava from a former reactor core eating its way to China. People seemed to understand it intuitively no matter how over-represented the risk.

The new reactors make that scenario obsolete with a solution that’s “as dumb as a brick” - hire a bunch of boilermakers to lay down a brick patio under the reactor vessel. Of course, one has to use high temperature alumina brick and lay it about 1.5 meters (~5 feet) thick and wide enough to act as a “cookie sheet.” There will be minor specification changes necessary but nothing that the refractory industry can’t handle easily. Alumina brick is already used for lining glass furnances and slag pits.

Yet, I’ve have NEVER heard or read of the nuclear industry mentioning this in public. We engineers know about it but the ramifications of this feature on the public debate haven’t yet been communicated to the world. In my marketing classes at B-school, I was taught to never confuse a feature and a benefit (unintentionally, that is.) Nobody CARES about our firebrick patio, especially if we insist on calling them "passive corium barriers." But tell them that there can never be a China Syndrome in the new designs, that the China Syndrome is obsolete, and you’ve communicated a real benefit.

Technorati tags: , , , , , ,

Comments

Anonymous said…
[antinuke mode]

Aha - you see, the new reactors CAN melt down! Why else would they put this molten core-catcher under the reactor, when earlier builds didn't bother? These ones must be even worse than the last ones!
Bombs, radiation, birth defects, pollution, cancer, bombs! Please give generously!!

[/antinuke]
Kirk Sorensen said…
Or you could use a fluid-fueled reactor where the fuel is in a solution. In those reactors the probability of meltdown is 100%.

In all seriousness, what you're really after is a system to passively remove decay heat after the reactor has shut down. Assuming that you have a core-catcher, everything else must have already failed. Do they plan to embed the core-catcher with active cooling elements or do they assume that the thermal inertia of the core-catcher is sufficient to absorb decay heat? (at some point the thing will come into thermal equilibrium with its surrounding, but at what temperature?)
Joseph Somsel said…
A "core catcher" is, to my mind, the term properly used where criticality is a concern, ie for highly enriched fuel and are usually internal to the vessel. Fermi 1 had a core catcher. For LWRs with their low enrichment, corium can not go critical in any configuration therefore they do not have core catchers.

In any case, the short and sweet message is that the China Syndrome is a thing of the past and not a concern for advanced LWRs.

Let the anti's play defense on highly technical issues this time.

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…