Skip to main content

INL Reached a Milestone on Nuclear Fuel Performance

From ScienceDaily:
The research to improve the performance of coated-particle nuclear fuel met an important milestone by reaching a burnup of 9 percent without any fuel failure. Raising the burnup level of fuel in a nuclear reactor reduces the amount of fuel required to produce a given amount of energy while reducing the volume of the used fuel generated, and improves the overall economics of the reactor system.

The [Idaho National Lab] team studied the very successful technology developed by the Germans for this fuel in the 1980s and decided to make the carbon and silicon carbide layers of the U.S. particle coatings more closely resemble the German model. The changes resulted in success that has matched the historical German level.

INL's Advanced Test Reactor was a key enabler of the successful research. The ATR was used to provide the heating of the fuel to watch the fuel's response. The fuel kernel is coated with layers of carbon and silicon compounds. These microspheres are then placed in compacts one-half-inch wide by two inches long and then placed in graphite inside the reactor for testing. The fuel element is closely monitored while inside the test reactor to track its behavior.

...

The team has now set its sights on reaching its next major milestone -- achievement of a 12-14 percent burnup* expected later this calendar year.

...

*A burnup is a measure of the neutron irradiation of the fuel. Higher burnup allows more of the fissile 235U and of the plutonium bred from the 238U to be utilised, reducing the uranium requirements of the fuel cycle.
Pretty exciting stuff.

Comments

Anonymous said…
Thank you for posting this, David, but to me it just points out the inherent limitations of solid nuclear fuel forms. They are inherently compromised by their covalent bonds.

Liquid-fluoride forms of nuclear fuel have ionic bonding that is impervious to radiation damage, and can achieve essentially unlimited radiation exposure. Which means fuels in fluoride form (like UF4 or ThF4) can achieve essentially 100% burnup. All of this was demonstrated in ORNL test reactors back in the 50s and 60s, but has been almost entirely forgotten by today's nuclear engineering community.
Rod Adams said…
Kirk:

Keep reminding us. In the meantime, the high temperature solid fuel does have some useful advantages over conventionally available light water reactor fuel in zircalloy cladding.

As you know, I really like the idea of using that fuel in simple gas turbine machines that can make the "high capital" cost disadvantage of nuclear power an obsolete concept in certain markets.

Rod Adams
Adams Atomic Engines, Inc.
Anonymous said…
Has anyone run the numbers to convert this 9% burnup to megawatt-days per metric tonne? Since plutonium is being produced at the same time, is it 9% of initial fissile material or 9% of total uranium?
Anonymous said…
Pete,

It' s 9% of burn-up of all heavy metals. If you consider that the fission of one gram of HM produces about 1 MWday of thermal enenrgy, that 9% means about 85-90 MWd per kg of strarting low enriched uranium

Popular posts from this blog

Activists' Claims Distort Facts about Advanced Reactor Design

Below is from our rapid response team . Yesterday, regional anti-nuclear organizations asked federal nuclear energy regulators to launch an investigation into what it claims are “newly identified flaws” in Westinghouse’s advanced reactor design, the AP1000. During a teleconference releasing a report on the subject, participants urged the Nuclear Regulatory Commission to suspend license reviews of proposed AP1000 reactors. In its news release, even the groups making these allegations provide conflicting information on its findings. In one instance, the groups cite “dozens of corrosion holes” at reactor vessels and in another says that eight holes have been documented. In all cases, there is another containment mechanism that would provide a barrier to radiation release. Below, we examine why these claims are unwarranted and why the AP1000 design certification process should continue as designated by the NRC. Myth: In the AP1000 reactor design, the gap between the shield bu...

Wednesday Update

From NEI’s Japan micro-site: NRC, Industry Concur on Many Post-Fukushima Actions Industry/Regulatory/Political Issues • There is a “great deal of alignment” between the U.S. Nuclear Regulatory Commission and the industry on initial steps to take at America’s nuclear energy facilities in response to the nuclear accident in Japan, Charles Pardee, the chief operating officer of Exelon Generation Co., said at an agency briefing today. The briefing gave stakeholders an opportunity to discuss staff recommendations for near-term actions the agency may take at U.S. facilities. PowerPoint slides from the meeting are on the NRC website. • The International Atomic Energy Agency board has approved a plan that calls for inspectors to evaluate reactor safety at nuclear energy facilities every three years. Governments may opt out of having their country’s facilities inspected. Also approved were plans to maintain a rapid response team of experts ready to assist facility operators recoverin...

Nuclear Utility Moves Up in Credit Ratings, Bank is "Comfortable with Nuclear Strategy"

Some positive signs that nuclear utilities can continue to receive positive ratings even while they finance new nuclear plants for the first time in decades: Wells Fargo upgrades SCANA to Outperform from Market Perform Wells analyst says, "YTD, SCG shares have underperformed the Regulated Electrics (total return +2% vs. +9%). Shares trade at 11.3X our 10E EPS, a modest discount to the peer group median of 11.8X. We view the valuation as attractive given a comparatively constructive regulatory environment and potential for above-average long-term EPS growth prospects ... Comfortable with Nuclear Strategy. SCG plans to participate in the development of two regulated nuclear units at a cost of $6.3B, raising legitimate concerns regarding financing and construction. We have carefully considered the risks and are comfortable with SCG’s strategy based on a highly constructive political & regulatory environment, manageable financing needs stretched out over 10 years, strong partners...