Skip to main content

INL Reached a Milestone on Nuclear Fuel Performance

From ScienceDaily:
The research to improve the performance of coated-particle nuclear fuel met an important milestone by reaching a burnup of 9 percent without any fuel failure. Raising the burnup level of fuel in a nuclear reactor reduces the amount of fuel required to produce a given amount of energy while reducing the volume of the used fuel generated, and improves the overall economics of the reactor system.

The [Idaho National Lab] team studied the very successful technology developed by the Germans for this fuel in the 1980s and decided to make the carbon and silicon carbide layers of the U.S. particle coatings more closely resemble the German model. The changes resulted in success that has matched the historical German level.

INL's Advanced Test Reactor was a key enabler of the successful research. The ATR was used to provide the heating of the fuel to watch the fuel's response. The fuel kernel is coated with layers of carbon and silicon compounds. These microspheres are then placed in compacts one-half-inch wide by two inches long and then placed in graphite inside the reactor for testing. The fuel element is closely monitored while inside the test reactor to track its behavior.

...

The team has now set its sights on reaching its next major milestone -- achievement of a 12-14 percent burnup* expected later this calendar year.

...

*A burnup is a measure of the neutron irradiation of the fuel. Higher burnup allows more of the fissile 235U and of the plutonium bred from the 238U to be utilised, reducing the uranium requirements of the fuel cycle.
Pretty exciting stuff.

Comments

Kirk Sorensen said…
Thank you for posting this, David, but to me it just points out the inherent limitations of solid nuclear fuel forms. They are inherently compromised by their covalent bonds.

Liquid-fluoride forms of nuclear fuel have ionic bonding that is impervious to radiation damage, and can achieve essentially unlimited radiation exposure. Which means fuels in fluoride form (like UF4 or ThF4) can achieve essentially 100% burnup. All of this was demonstrated in ORNL test reactors back in the 50s and 60s, but has been almost entirely forgotten by today's nuclear engineering community.
Rod Adams said…
Kirk:

Keep reminding us. In the meantime, the high temperature solid fuel does have some useful advantages over conventionally available light water reactor fuel in zircalloy cladding.

As you know, I really like the idea of using that fuel in simple gas turbine machines that can make the "high capital" cost disadvantage of nuclear power an obsolete concept in certain markets.

Rod Adams
Adams Atomic Engines, Inc.
Pete said…
Has anyone run the numbers to convert this 9% burnup to megawatt-days per metric tonne? Since plutonium is being produced at the same time, is it 9% of initial fissile material or 9% of total uranium?
Alessandro said…
Pete,

It' s 9% of burn-up of all heavy metals. If you consider that the fission of one gram of HM produces about 1 MWday of thermal enenrgy, that 9% means about 85-90 MWd per kg of strarting low enriched uranium

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…

Innovation Fuels the Nuclear Legacy: Southern Nuclear Employees Share Their Stories

Blake Bolt and Sharimar Colon are excited about nuclear energy. Each works at Southern Nuclear Co. and sees firsthand how their ingenuity powers the nation’s largest supply of clean energy. For Powered by Our People, they shared their stories of advocacy, innovation in the workplace and efforts to promote efficiency. Their passion for nuclear energy casts a bright future for the industry.

Blake Bolt has worked in the nuclear industry for six years and is currently the work week manager at Hatch Nuclear Plant in Georgia. He takes pride in an industry he might one day pass on to his children.

What is your job and why do you enjoy doing it?
As a Work Week Manager at Plant Hatch, my primary responsibility is to ensure nuclear safety and manage the risk associated with work by planning, scheduling, preparing and executing work to maximize the availability and reliability of station equipment and systems. I love my job because it enables me to work directly with every department on the plant…