Skip to main content

NEI Top Industry Practice Awards for 2011

Every year, nuclear utilities and vendors submit to NEI new and innovative practices they’ve developed to achieve better operations. NEI and a few industry folks analyze the submissions and hand out awards for the best new practices. The awards recognize industry employees in 14 categories—four vendor awards, nine process awards for innovation to improve safety, efficiency and nuclear plant performance, and one award for vision and leadership. This year there are a number of excellent innovations highlighted below. The full list of awards and descriptions can be found here. 

Real-Time Method to Prevent Fuel Rod Defects

Tennessee Valley Authority (TVA) employees at the Browns Ferry nuclear energy facility in Alabama have been honored with the B. Ralph Sylvia “Best of the Best” Award for developing a state-of-the-art method to prevent reactor fuel rod defects. Using real-time stress monitoring of the sealed tubes that hold the uranium fuel pellets, a new methodology called XEDOR has proven highly effective.

Five years ago, the industry established a goal to eliminate by the end of 2010 fuel rod defects that could release radionuclides from fuel pellets. Some damage is caused by the interaction between fuel pellets and the metal tube material called cladding. The phenomenon can result in additional costs to utilities, affect plant operation and subject personnel performing repairs to additional radiation exposure. image

Working with AREVA, the winning TVA team implemented a new methodology that performs real-time, on-line stress calculations for every six-inch fuel rod segment in all parts of the reactor core. It is the first method that can calculate how close fuel rods are to cladding damage, thus ensuring fuel integrity performance. The user-friendly methodology is incorporated into the core monitoring system, and provides the plant operating staff with fuel condition information that can be easily understood and applied. This method has reduced fuel leaks, increased reactor productivity, and avoided millions of dollars in additional costs.

Tungsten Radiation Shielding

Entergy employees at Arkansas Nuclear One won the Materials and Services Process Award for creating tungsten radiation shielding that effectively protects both equipment and personnel. The innovation has been used in Japan in response to the accident at the Fukushima Daiichi power station.

The new material shields piping and surfaces effectively and economically, and also has been fabricated into a radiation-shielding vest that workers wear—a breakthrough application. Made primarily from tungsten with iron metal powder immersed in a silicone polymer, the material is flexible, heat-resistant, nontoxic and nonhazardous.

The tungsten vest is a major advancement. Traditionally, the industry has only thought to “shield the source” of radiation. Now “shielding the person” can be done in a lightweight and effective way to reduce exposure on an individual level and provide industrial safety value. Tungsten shielding is twice as effective at lowering exposure rates as lead and saves more than $300,000 per maintenance outage.

Medical Isotopes image

Employees at Exelon Nuclear’s Clinton power station in Illinois are recipients of the Vision & Leadership Award for their pioneering development of the Isotope Test Assembly project. By simultaneously generating power and creating a widely used medical isotope—cobalt-60—the Exelon Nuclear team is addressing an urgent international medical need.

Cobalt-60 is used in noninvasive cancer therapy, with more than 15 million treatments each year in 80 countries. Cobalt-60 also is used in medical instrument sterilization, food preservation, package decontamination and pharmaceutical purification. The United States imports 95 percent of the cobalt isotopes that it uses for such purposes. To maintain a steady supply of isotopes to satisfy demand for necessary nuclear medicine procedures, the Exelon Nuclear’s team is working to create cobalt-60 in a commercial reactor during normal power generation.

To produce the isotope, cobalt-59 “targets” are added to some fuel assemblies in the reactor. During reactor operations, cobalt-59 atoms absorb neutrons and are transformed into cobalt-60 isotopes. The isotope rods are removed and shipped to a processing facility after several operating cycles. Cobalt-60 then is available for medical and other health and safety applications. The first commercial supply of cobalt-60 from Clinton will be available in 2014. Be sure to check out the rest of the awards.

Update, 5/13:

A short video explaining the radiation shielding is below. As well, below is another short video explaining Exelon's medical isotopes project.


Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.


The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.

What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…