Skip to main content

IEA and the Disaster of “Low Nuclear” Usage

Belgium-Nuclear-Power-JPEG-9This isn’t bad:

Nuclear energy remains vital to cope with rising energy demand, mainly in emerging economies, fight global warming and avert increased damage to the environment, the IEA warned on Wednesday.

Here’s another bit from the same Agence Presse Francais story:

The IEA also warned that global nuclear generation capacity could fall by 15.0 percent by 2035 if countries such as Germany and Belgium pressed ahead with cutting their nuclear output in the light of the nuclear accident at Fukushima in Japan in April.

This is exactly right. In a Dow Jones story, EIA even calls it a warning:

But the report's "Low Nuclear" scenario is still only a possibility, rather than a certainty, said Fatih Birol, the IEA's chief economist.

"We made the low nuclear scenario to show governments the consequences" of the policies they are considering in the wake of the Fukushima disaster, Birol told Dow Jones Newswires in an interview. It is intended as a warning, he said, without naming any particular governments.

Well, the AFP story calls out Germany and Belgium by name and the report mentions them, too, but perhaps Birol wants to be more subtle. Focusing on this is good for the nuclear energy business, but it probably sells short what the EIA report is and does.

What the EIA does is provide an Annual Energy Outlook report which presents a number of reference scenarios and cases showing what might happen over the next 25 years in the energy market given different variables. One of the variables – which is called the Low Nuclear Case – reduces nuclear energy capacity by half by 2035. And indeed, doing so has exactly the dire outcomes AFP and Dow Jones says it does.

This story from Dow Jones avoids the issue of warnings, allowing the EIA itself to say that later on:

The crisis at Japan's Fukushima atomic facility could result in a 15% fall in nuclear power capacity by 2035 if countries reconsider existing policies, the International Energy Agency said Wednesday.

This would result in increased costs for coal and gas imports for power generation and higher emissions of climate-warming gases, it said.

But it still should be stressed that the IEA also says no such thing will happen – in most of the other scenarios and cases. The New Policy scenario sees nuclear energy capacity increasing 70 percent. In introducing this scenario, the report directly says (no link – IEA would like to sell this report):

In the New Policies Scenario, generation from nuclear power plants worldwide increases by almost 2000 TWh over the Outlook period, more than the nuclear output in North America and OECD Europe combined in 2010. This increase comes predominantly from non-OECD countries, with China alone accounting for over two-fifths of the global increase. In India, nuclear power generation grows almost ten-fold. In Russia, it grows by two-thirds. About 60% of the nuclear capacity added in the OECD replaces ageing nuclear plants that are retired in the Outlook period; in total, capacity increases by only 16%.

And elsewhere in the report, the report mentions that most countries have reaffirmed their commitment to their nuclear energy industries.

That’s the thing about the future – you can say almost anything about it – ands IEA does, sometimes drastically different things, from year to year. And that’s fine: after all, the accident in Japan happened between two reports.

The IEA reports are highly informed, but still, they cannot be anything but provisional. It’s the nature of the work. (The OECD, by the way, is the Organization for Economic Cooperation and Development, a sort of international chamber of commerce.)

Now, having said all that, the point these stories make is more than valid. if nuclear capacity were halved in the next 25 years, IEA cannot project a plausible way to achieve key policy goals – about global warming and carbon emission reduction – and the price of electricity will certainly face upward pressure. Moreover, renewable energy source will take up some of the slack, but coal will take up a lot more.

And IEA says the cost to replace nuclear capacity and meet new demand will be somewhere in the neighborhood of $1.5 trillion. (after a few billion, why just hand out blank pieces of paper?)

While it was certainly pleasing to watch EIA set the table for a lot of press attention, I think it’s fair to say that most policymakers understand what nuclear energy is and does – what policy goals it helps achieve – and how much electricity it can produce. So the somewhat dire tone taken – while justified by the report – reflects what is explicitly a prediction not a reality.

No one wants to alarm anyone, you understand.

Although the report is not available to the general public, you can still get a lot of information here.

Unusual angle on the Doel nuclear facility in Belgium. But not by name.


Every nation and every community on Earth doesn't have to have a nuclear power plant nearby in order for the nuclear industry to be successful and for the Earth to have carbon neutral energy production.

The fact that France exports nuclear electricity to Germany is an advantage for both France and Germany: Germany doesn't have to go through the political headaches of trying to build more nuclear power plants and France gets to make more money building nuclear power plants at home and exporting electricity to Germany.

France and other nations could export substantially more nuclear energy if it also built nuclear power plants dedicated to producing hydrogen for the synthetic production of methanol for peak load electricity production through methanol power plants or for conversion into gasoline through the MTG process for automobile transportation. The carbon required for the synthesis of methanol could either come from urban and rural biowaste or through CO2 extraction from air. The US produces enough carbon from rural and urban biowaste to completely replace all of its petroleum needs-- if nuclear hydrogen is added to the mix.

Nations with nuclear power plants could then export nuclear energy in the form of methanol or synthetic gasoline to non-nuclear nations all over the planet!

And the same goes for States within America. States that want to build more nuclear power plants for methanol and gasoline production could export methanol and gasoline to States that are politically unable to build nuclear power plants. A State like California that is currently hostile to building more nuclear power plants has no problems importing electricity from nuclear power plants from Arizona. So they should have no problems importing methanol produced from out of state nuclear power plants or carbon neutral gasoline.

Popular posts from this blog

Making Clouds for a Living

Donell Banks works at Southern Nuclear’s Plant Vogtle units 3 and 4 as a shift supervisor in Operations, but is in the process of transitioning to his newly appointed role as the daily work controls manager. He has been in the nuclear energy industry for about 11 years.

I love what I do because I have the unique opportunity to help shape the direction and influence the culture for the future of nuclear power in the United States. Every single day presents a new challenge, but I wouldn't have it any other way. As a shift supervisor, I was primarily responsible for managing the development of procedures and programs to support operation of the first new nuclear units in the United States in more than 30 years. As the daily work controls manager, I will be responsible for oversight of the execution and scheduling of daily work to ensure organizational readiness to operate the new units.

I envision a nuclear energy industry that leverages the technology of today to improve efficiency…

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear: Energy for All Political Seasons

The electoral college will soon confirm a surprise election result, Donald Trump. However, in the electricity world, there are fewer surprises – physics and economics will continue to apply, and Republicans and Democrats are going to find a lot to like about nuclear energy over the next four years.

In a Trump administration, the carbon conversation is going to be less prominent. But the nuclear value proposition is still there. We bring steady jobs to rural areas, including in the Rust Belt, which put Donald Trump in office. Nuclear plants keep the surrounding communities vibrant.

We hold down electricity costs for the whole economy. We provide energy diversity, reducing the risk of disruption. We are a critical part of America’s industrial infrastructure, and the importance of infrastructure is something that President-Elect Trump has stressed.

One of our infrastructure challenges is natural gas pipelines, which have gotten more congested as extremely low gas prices have pulled m…