Skip to main content

Out of Zion; Into Small Reactors

zionNuclear Energy Insider has an interesting article up on the decommissioning of Illinois’ Zion facility outside Chicago. There are some details that suggest how this kind of work might be done relatively quickly:
The Zion decommissioning project will take considerably less time than originally planned because the cleanup will bypass one of the most laborious and time-consuming steps of taking down a nuclear plant. According to the New York Times, the project will bypass separating radioactive materials --  which must go to a licensed dump -- from nonradioactive materials, which can be deposited onto ordinary industrial landfills.
The NYT report says that the new strategy eliminates separating the two. Instead, anything that could include radioactive contamination will be treated as radioactive waste.
The article describes it as a 10-year project, which I assume includes moves like this one. There are 12 other shuttered plants in the United States that have not yet set decommissioning dates. It sounds like Zion may provide a model for developing ideas on how to decommission a facility more quickly and at less expense. The whole article is worth a read.
---
Although comparing small reactors to iPads is a little silly, Margaret Ryan tries it out for a couple of paragraphs, then drops it in favor of a pretty good summary of the state of play for the, hmmm, tiny titans?
The Department of Energy has two cost-sharing programs, one that helps developed technology get licensed by the Nuclear Regulatory Commission, and one to help newer technologies prove their concepts by building prototypes at DOE's Savannah River site. DOE just announced three partnerships for the latter program, with Hyperion Power Generation, Holtec International's SMR subsidiary, and NuScale Power.
The interesting thing about those prototypes is that they can be built without NRC licensing as demonstration projects. Small reactors, by the way, are those that produce 300 or fewer megawatts capacity.
Why have them?
Lyons said SMRs, generally under 300 MW, are the right size to replace coal plants being shut because of age and inability to meet modern pollution standards. However, under the Environmental Protection Agency's deadlines, most of those plants will be shut by 2017, and the SMRs that DOE will assist won't be ready to deploy before the early 2020s.
These timelines may or may not line up, but it isn’t only the older or dirtier coal plants these, um, mighty mites (?) can replace. Or the only niche for them.
TVA is already looking to move into the SMR niche. The company has an agreement with Generation mPower - a joint venture of Babcock & Wilcox and Bechtel. Together they plan to install up to six of GmP's 125- to 180-MW modules at TVA's Clinch River site, said TVA Vice President of Nuclear Generation Jack Bailey at an NRC conference March 14.
Maybe the best way to see the potential here is to say that they have a good many plausible potential uses, as TVA shows – the marketplace for them just isn’t developed yet, though there seems a decided hunger for them in a number of potential areas. It’s way too early to even class them as niche items.
This NEI page offers that they would be good fits to provide “free electricity in remote locations where there is little to no access to the main power grid or … process heat to industrial applications.” The page has lots more good information on these, uh, diminutive dervishes? All right, maybe the iPad idea isn’t so bad.
The Zion facility.

Comments

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…