Skip to main content

The Small Reactors at Savannah River

hyperion power moduleThe Department of Energy proposed a couple of years ago spurring the development of small nuclear reactors by entering public-private partnerships with several vendors to foster the building of prototypes and, eventually, generate NRC license applications for the designs.
Now, the first fruit of this program has budded:
Hyperion Power Generation Inc., the Department of Energy – Savannah River, and Savannah River National Laboratory have announced their commitment to deploy a privately-funded first-of-a-kind Hyperion reactor at the DOE Savannah River Site.
Hyperion doesn’t need a license to pursue its work, as it could sell its reactor technology overseas if it chose and go through whatever processes are established in other countries. But it recognizes the value of the NRC’s license procedure as a kind of gold standard:
“It is important that we achieve NRC licensing to provide worldwide confidence in the technology and design of our advanced Generation 4 reactor,” said Dave Carlson, COO and Chief Nuclear Officer with HPG.
Let’s back up over the news a little bit.
Hyperion joins NuScale and Holtec International among the companies included in the DOE program. The work by all three companies will be done at South Carolina’s Savannah River Site. NuScale and Hyperion have small reactor designs.
So does Holtec, which I’ve generally regarded as a parts fabrication company. Holtec’s HI-SMUR 140 is a 140-megawatt reactor with an underground core. The design requires no reactor coolant pump or off-site power to cool the reactor core.
A little more about what the announcements mean:
The agreements will allow these private companies to gain information on SMR reactor deployment at SRS and offer a framework to develop land use and site services contracts to promote these initiatives. The MOUs help to leverage Savannah River’s nuclear expertise, energy facilities and land assets that support private sectors to develop, test and license prototype SMR technologies.
That’s a chunk of acronyms – MOU is memorandum of understanding, the agreements between Savannah River Site and the companies, presumably to be followed by contracts.
World Nuclear News expands on this a bit:
However, the DoE stressed that the new agreements "do not constitute a federal funding commitment." It said that it envisages private sector funding to be used to develop these technologies and support deployment plans. The DoE added that the agreements are unrelated to its funding opportunity announcement for SMR cost-share projects announced in January.
This forward-looking projects will be interesting to follow, something I’m sure the three companies and DOE will be eager to help us do.
A speech given about the Canadian response to the accident at Japan’s Fukushima Daiichi site is an interesting echo of the American response, with the Canadian Nuclear Safety Commission in the role of the NRC and the World Association of Nuclear Operators playing INPO (and INPO playing INPO, too.)
The speaker is Tom Mitchell, the President and CEO of Ontario Power Generation. The following excerpts are adapted from notes he put together for the speech. You can read the whole thing here. (I like that the Canadians use the term learnings for lessons learned,too.)
Much has been written about Fukushima – some of it critical of our industry. Yet as I look back at events over the past year, I believe our reaction to Fukushima was timely, appropriate and effective.
Right from the start, here in Canada we moved quickly to give people as many facts as possible about the event – and assure them of the safety of our nuclear units. The CNA was very active during this period. So was OPG as well as our nuclear colleagues.
At OPG, we communicated quickly and across a number of fronts --- with local communities and on regional, national and international level. We dedicated a portion of our website to the event – providing fact-based information about the event and our stations. We made our executives available for speeches and interviews. We did extensive outreach in our nuclear site communities. We published information pieces in local and regional newspapers. And we established regular and ongoing communications with nuclear organizations from around the world – including WANO (World Association of Nuclear Operators), INPO (Institute of Nuclear Power Operations) and the IAEA (International Atomic Energy Agency).
Our message was clear.
The geology at our sites was stable and our nuclear safety systems were robust – with redundant back-up power so that we were not vulnerable to Fukushima-type acts of nature.
The CNSC (Canadian Nuclear Safety Commission) was also active.
Shortly after the event, it asked Canadian nuclear operators to provide verification their reactors were safe. The CNSC also provided information on its website that was useful to both the industry and the general public. In response to the CNSC’s request, OPG and other operators launched a thorough assessment of their operations to confirm their safety.
We also committed to a number of specific actions based on lessons learned from Fukushima. By April, we had reconfirmed that our stations were indeed safe and the systems in place at OPG’s nuclear facilities were robust enough to withstand significant emergencies. In July we issued another report in which we outlined the steps we were taking to address the key learnings coming out of Fukushima. These learnings included the absolute necessity to guard against external events – specifically those that threaten to overwhelm the design basis of the plant’s systems and equipment.
I’m not sure of the CNSC’s role – it may not carry the same regulatory heft of the NRC or perhaps Sullivan just wanted to stress his company’s activities. 
There’s a section of the speech about the CANDU (which stands for Canada Deuterium Uranium) reactor, the country’s home-grown variation on a pressurized heavy water reactor. Canada has 18 operating reactors, 16 in Ontario, one in Quebec and one in New Brunswick. All are CANDUs. Canada has also sold about 32 CANDUs to other countries. None are in the United States. You can read more about the CANDU reactor here.
Nuclear energy provides about 15 per cent of the country’s electricity and 50 percent of Ontario’s electricity.
Congress and Bharatiya Janata Party (BJP) cadres hurled stones on anti-nuclear energy protesters here on Saturday. A police constable, Murugesan (45), suffered head injuries in the incident.
The story in The Hindu offers more details but not enough context to understand why government pelting occurred here. Apparently, the protest involves the building of the Kudankulum facility in Tamil Nadu, which has indeed become contentious, but that’s all I can figure out. Let’s file this one away until more information surfaces. In the meantime: no pelting.
The Hyperion Power Module is actually the little pellet-like element indicated by the arrow in this conceptual drawing.


Steve Skutnik said…
A minor correction - SRS is in the other Carolina (i.e., Aiken, SC).
SteveK9 said…
Maybe some of the Indians are realizing that a couple of hundred ignorant fisherman are keeping 2 million people from access to electricity.
Anonymous said…
I have a big question: Will the prototype projects at Savannah River require NRC approval? Since the NRC is the biggest hurdle to making a reactor, it would be nice if one could build first, and get the licensing later.

I ask because I've been following this for some time, and gotten mixed signals. Clearly, some parts of the federal government can make a nuclear reactor without NRC involvement (when was the last time you heard of an NRC hearing for a new submarine reactor?), but is the DOE one of them? At least once, I read that on DOE projects, the NRC had no power, and then in a follow up to that, the NRC claimed it did have the power.

If the NRC has the power to license a prototype reactor at Savannah River, we can kiss these projects goodbye. If the AP1000 took four years from application to licensure for a bog standard simplified evolutionary design, how long will it take for a revolutionary design like Hyperion? (Especially considering that the NRC isn't even looking at anything other than light water designs).
Anonymous said…
NRC doesn't prioritize design certification reviews for designs that don't have any imminent customers. That doesn't seem like bias, but rather good management sense.

NEI representatives on the board: Do you consider NRC licensing to be "the biggest hurdle to making a reactor"?

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.

Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …