Skip to main content

A Man, A Plan, A Canal–Panama! – Oh, and A Floating Reactor, Too

Floating nuclear energy stations, highlighted by the Russian effort noted below, are not a new phenomenon and represent a further development with small nuclear reactors. The Akademik Lomonotov is the latest, but it has a longer legacy than one might think – a legacy well worth considering.

Consider the U.S.S. Sturgis, a repurposed World War II-era ship which contributed its hull to house the MH-1A (M=Mobile, H=High-Powered, 1A=First of its kind). Work began on installing the 10,000 kilowatt reactor in 1963, it was tested in Virginia in 1967 and then deployed to the Panama Canal (then under U.S. control) from 1968 to 1975 to supply electricity to the grid there.

This paper from the WM (waste management) Symposium describes the origin and purpose of the Sturgis:

In March, 1963, the World War II Liberty Ship Charles H. Cugle was selected from the Mobil Reserve Fleet for conversion to a mobile power source containing a high power (>10,000 kW) pressurized water nuclear reactor designated MH-1A. The propulsion plant was removed from the vessel and the midsection was replaced with a new midsection containing the power plant, a 350-ton steel containment “spheroid,” and a concrete collision barrier. This new midsection was approximately eight feet wider than the original vessel, and contained not only the nuclear reactor, but also the main components of the primary and secondary cooling systems, as well as the electrical equipment. The vessel, which essentially became a barge, was renamed Sturgis. It began operation in 1967 at Ft. Belvoir, Virginia and after one year was towed to Gatun Lake in the Panama Canal Zone where it was used to generate electricity for military and civilian use.

The Sturgis was the most powerful of the Army’s (small) nuclear fleet and the last to be decommissioned. Why?

Budget cutbacks in the US Army, the high price of maintaining the vessel and an upcoming nuclear refueling led the US Army to remove the Sturgis from the Panama Canal and shut down the MH-1A reactor in 1976. The ship was brought to the Reserve Fleet at Fort Eustis where she was stripped of her Nuclear Fuel and sealed off to prevent any potential contamination to the surrounding areas. She is presently maintained by the US Army Corps of Engineers and is slated for disposal, most likely through the US Navy's Nuclear Ship & Submarine Recycling Program (NSSRP) at Bremerton, WA.

Rod Adams over at Atomic Insights offers further information, which enumerates the pitfalls of being the first-of-a-kind:

Eventually, even the MH-1A became too expensive to maintain. Like all of the Army’s nuclear power plants, it was a one-of-a-kind machine, with a unique set of spare parts, operating procedures and machinery quirks.

It also required a group of highly trained specialists, all of whom required a regular rotation away from the plant in order to continue their Army careers. The burden of maintaining several unique specialties, ensuring adequate training, and keeping a suitable management structure was difficult for one small generating plant to handle on its own merits.

Maybe, too, when it became clear the U.S. would cede the canal to Panama (the U.S.-Panama treaty mandating the handover was signed in 1977), it made sense to transition away from the nuclear barge.

(The canal was started by the French in 1888 and finished in 1914 by the Americans, who operated it for the rest of the century; Panama seceded from Colombia in 1903 in part to facilitate the building of the canal.)

The WM Symposium paper only says:

The Panama Canal Company acquired additional land based electrical capacity and in 1976 it was determined that the Sturgis was no longer needed.

Make of it what you will. But one can see that the Sturgis in the 70s and the Akademik Lomonotov today answer the same issues as small reactors do  – the latter in particular basically is a modern small reactor, albeit built on Russian naval technology:

They have many useful applications, including generating emission-free electricity in remote locations where there is little to no access to the main power grid or providing process heat to industrial applications. They are “modular” in design, which means they can be manufactured completely in a factory and delivered and installed at the site in modules, giving them the name “small modular reactors,” or SMRs.

I’d probably add water desalination as an especially worthy application, but you get the idea.

---

Consider this post a corrective to the one below. While the Akademik Lomonotov represents a genuinely interesting development in the deployment of nuclear energy in itself, small reactors are its cousins and Sturgis is its parent. Recognizing that it is building upon a legacy – and an American one at that - only makes the case for its utility stronger.

---

I’m going to hazard that the Sturgis was named after Brigadier General Samuel Sturgis (1822-1889), who served during both the Mexican-American War and the Civil War. More on him here.

Comments

Anonymous said…
It's Lomonosov

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Why America Needs the MOX Facility

If Isaiah had been a nuclear engineer, he’d have loved this project. And the Trump Administration should too, despite the proposal to eliminate it in the FY 2018 budget.

The project is a massive factory near Aiken, S.C., that will take plutonium from the government’s arsenal and turn it into fuel for civilian power reactors. The plutonium, made by the United States during the Cold War in a competition with the Soviet Union, is now surplus, and the United States and the Russian Federation jointly agreed to reduce their stocks, to reduce the chance of its use in weapons. Over two thousand construction workers, technicians and engineers are at work to enable the transformation.

Carrying Isaiah’s “swords into plowshares” vision into the nuclear field did not originate with plutonium. In 1993, the United States and Russia began a 20-year program to take weapons-grade uranium out of the Russian inventory, dilute it to levels appropriate for civilian power plants, and then use it to produce…

Nuclear Is a Long-Term Investment for Ohio that Will Pay Big

With 50 different state legislative calendars, more than half of them adjourn by June, and those still in session throughout the year usually take a recess in the summer. So springtime is prime time for state legislative activity. In the next few weeks, legislatures are hosting hearings and calling for votes on bills that have been battered back and forth in the capital halls.

On Tuesday, The Ohio Public Utilities Committee hosted its third round of hearings on the Zero Emissions Nuclear Resources Program, House Bill 178, and NEI’s Maria Korsnick testified before a jam-packed room of legislators.


Washingtonians parachuting into state debates can be a tricky platform, but in this case, Maria’s remarks provided national perspective that put the Ohio conundrum into context. At the heart of this debate is the impact nuclear plants have on local jobs and the local economy, and that nuclear assets should be viewed as “long-term investments” for the state. Of course, clean air and electrons …